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Abstract

This paper investigates the neural correlates un-
derlying children cognitive ability to process se-
quences. This research stresses the developmen-
tal parallel between the appearance of complex
manipulatory skills and the usage of two words
compounds, and investigates the hypothesis that
similar neural structures might be recruited for
the processing of sequences in these two tasks.

We develop a model composed of a hierarchy of
connectionist architectures, that accounts for low-
level processing of sensory and motor information,
the building of complex sequences of sensory-
motor loops, to the construction of abstract sym-
bolic (linguistic) knowledge. We validate the
model against behavioral data, through an im-
plementation of the seriate nesting cup scenario
(Greenfield et al., 1972) in a dynamic simula-
tion of a child-caretaker pair of humanoid robots.
The seriate nesting cup experiment investigates
the correlates between the development of the
child’s ability to serially handle objects, and the
child’s ability to form and understand sequences
of words. We investigate the effect of varying a
number of parameters of the neural model, as a
way of accounting for the different capabilities
of the child to manipulate objects serially. We
present preliminary results. Ongoing work mod-
els grounding of basic linguistic capability, and in-
vestigate its role as a bootstrapping mechanisms
for the learning of manipulation tasks.

1. Introduction

A developmental approach represents a fruitful paradigm
for the construction of artificial systems capable of de-
veloping complex behaviors from simpler components
(Zlatev and Balkenius, 2001). A considerable body of
cognitive theories support the idea that higher level func-
tions of the brain, such as cognition and language, ex-
ploit lower level functions, used more generally for pro-

cessing perceptual information and driving motor sys-
tems (Piaget, 1970; Greenfield 1991). Moreover, such
a motor theory of language evolution and development
is also supported by neurophysiological data, that show
the central role of cortical motor systems in the evo-
lution and acquisition of different linguistic capabilities
(Pulvermuller, 2002). We ground our research on these
theories and investigate the hypothesis that neural struc-
tures, responsible for the processing of sequences, that
develop for purely motor tasks, might be recruited for
the development of language.

The ability to seriate, i.e. the capacity to relate an
intermediate element both backwards to the previous el-
ement and forwards to the next element in the sequence,
is an important topic of psychodevelopmental studies.
Like imitation and language acquisition, the ability to
seriate objects follows developmental stages that are well
documented (Piaget, 1970). Work by Greenfield and
colleagues developed the seriate nesting cup experiment
(Greenfield et al., 1972) to investigate the correlates be-
tween the development of the child’s ability to serially
handle objects, and the child’s ability to form and un-
derstand sequences of words. They report that children
between 11 and 36 months of age exhibit different strate-
gies, correlated to their developmental age, for combin-
ing cups of different sizes. Three distinct strategies were
identified: (1) the pairing method, when a single cup is
placed in/on a second cup; (2) the pot method, when
two or more cups are placed in/on another cup; (3) sub-
assembly method, when a previously constructed struc-
ture consisting of two or more cups is moved as a unit
in/on another cup or cup structure. The child’s choice of
the acting/acted upon cups seems to be based on either
one of these three criteria: size, proximity and contiguity.
The youngest children seem to use the proximity criteria
(i.e., same side of the table with the moving hand) for
pairing cups. Children of 16-24-month-old seems to fol-
low only the contiguity criteria (i.e., never reach behind
a nearer cup to use a more distant cup), while the 28- to
36-moth-old seems to follow the size criteria.

Greenfield and colleagues stressed the homology be-



tween these three action strategies and specific gram-
matical constructions. When a cup “acts upon” another
cup to form a new structure, there is a relation of actor-
action-acted upon; such a relation is realized in sentence
structures like subject-verb-object. The first action strat-
egy would, thus, correspond to the use of simple two-
words sentence. The second and third strategies, on the
other hand, allow the formation of multiple actor-action-
acted upon sequences, and, as such, would correspond to
the usage of more complex sentences. The difference is
that in the second stage the child performs a conjunction
of the sequences/words, while in the last stage, the em-
bedding of the cups is accomplished, reflected into the
capacity of using relative clauses in the language.

The seriate cups experiment is of relevance to the the-
ory of goal-directed imitation (Bekkering et al., 2000).
While watching the demonstration, the children form
an representation of the goal of the task. The seriate
cups experiment highlights three goal-directed strategies
based on different metrics (the criteria listed above).

In this research, we investigate the parallel between
the development of the child’s ability to process se-
quences of manipulatory action and the child’s ability
to process sequences of words. In this paper, we present
preliminary steps towards the modeling of the seriate
nesting cup scenario. This works follows a general ap-
proach to understand the principles behind imitation
learning, and, in particular to study the strategies re-
quired to discover the goal, i.e. what to imitate, and the
metric from a demonstrated task (Billard et al., 2003). It
builds on previous work of ours that investigated the role
of imitation in learning simple sequences of movements
(Billard and Hayes, 1999) and the role of imitation in the
emergence of synthetic proto-language in an autonomous
robot (Billard, 2002).

2. Related modeling work

Learning to seriate nesting cups requires the ability to
represent time. The common need of the architectures
aimed at processing temporal sequences is the presence
of a short-term memory and of a prediction mechanism.
Recurrent networks can in principle implement short-
term memory using the feedback connections. Temporal
sequences are learned as set of associations between con-
secutive components, and recall of the next elements in
the sequence is possible based on the previous compo-
nents. Different temporal variants of connectionist net-
works can be constructed by locally modifying the archi-
tecture to keep a trace of history (i.e., partial recurrent
networks), reconfiguring the network parameters to ac-
commodate enough temporal information (i.e., time de-
lay networks) or by designing special architectures (see
Chappelier et al., 2001 for a review).

To deal with temporal temporal dependencies beyond
consecutive components different solutions have been de-

veloped. Early attempts to deal with long time lags,
were based on using time constants to influence changes
of unit activations. Recent models propose different
ways to enhance the memory capacity at the neural
level, by carefully designing the basic computational
unit (Hochreiter and Schmidhuber, 1997). Our previous
work on robot learning (Billard and Hayes, 1999) used a
time-delay associative network, consisting of a Willshaw
network, to which self-recurrent connections have been
added and a capacity to encode (in the weights) the time
and frequency of nodes activation.

Directly relevant to the developmental correlation hy-
pothesis, are the computer simulations of Reilly (1997),
who demonstrated a computational advantage in build-
ing a language production capability upon a motor-
planning foundation. He proposed the concepts of corti-
cal software re-use and asymmetric collaboration to ex-
plain how language processing and cognition can be built
upon sensory-motor programs. Related work have been
carried by Dienes et al. (1999) on the transfer of struc-
tural knowledge between different domains.

A number of attempts have also been made towards
world-to-word mapping. Regier’ model (1995) on spatial
knowledge learning was built based on a tripartite tra-
jectory representation of type source-path-destination,
aimed at grasping the event logic in both motion and
language. Siskind (1995) proposed the use of visual
primitives which encode notions of support, contact
and attachment to ground the semantics of events for
verb learning. Event logic has been recently applied by
Dominey (2003) for learning grammatical constructions
in a miniature language from narrated video events, and
by Billard et al. (2003) to the learning and reproduction
of a manipulation task by a humanoid robot.

Our work complements these different efforts, by
bringing forward the importance of imitation in the
building of manipulatory and linguistic abilities.

3. The computational framework

Ongoing work presented here is aimed at investigating
the effect of varying a number of parameters of the neural
model, as a way of accounting for the different capabil-
ities in the child. In particular, we consider the effects
of joint attention, mnezic capacities, and development
of object concept on the child/robot’s reduced ability of
composing manipulation and linguistic steps.

There is a growing body of evidence that extended
periods of adult-child attentional focus on nonlinguis-
tic entities, scaffold the child’s early language develop-
ment (Tomasello, 1988). When the infant hears an ut-
terance and perceives a visual scene, he/she has to dis-
cover to what aspect of the scene the sentence is re-
ferring. While joint attention solely cannot solve this
problem (i.e., cross-situational learning is necessary) it
makes it possible and computationally tractable. One of



Figure 1: (a) The Xanim dynamic simulation of a Child-Caretaker pair of humanoid robots. The Caretaker demonstrates the

seriate cup task. The Child and Caretaker shared focus of attention is highlighted by the crossing of their gaze directions. (b)

The experimental setting for the seriate cups task with Robota (under construction). (c) Robota’s 5 DOF arm.

the assumptions of our system is that a powerful joint
attentional mechanism acts as an information-processing
bottleneck for the incoming sensory information.

By the end of the first year of life, infants show de-
layed imitation capacities and long-term memory for se-
rial order (Bauer, 2002). However, it was suggested that
the capability of infants of this age to remember seri-
ally organized sequences depends on being primed with
the preceding component. Correspondingly, their capac-
ity would be due to a paired-associate learning, rather
than to learning of distant temporal relations. We con-
sider that there is no evidence to attribute the deficit in
seriation solely to a mnezic deficit, and rather, we in-
vestigate possible limitations of the learning employed.
Learning it is also a function of the way external infor-
mation is represented. Carey and Xu (2001) brought
evidence that children up to 10 months of age cannot
draw on featural properties to establish objects identity.
Rather, they rely on spatiotemporal information (i.e.,
location) to build distinct representations of the objects.

As concerns the neural and architectural biases of
the model, these are arising from the sub-symbolic
paradigm: temporal overlapping of neural states dur-
ing interaction with the environment, graded activation
of simultaneously active representations, and incomplete
reduction of information during generalization (Dorfiner,
1992). We draw on both computational and neurobio-
logical data indicating that symbolic knowledge in the
brain is implemented through the distributed activation
of sub-symbolic features (Pulvermuller, 2002). The big
promise of a distributed approach is the integration of
learning and representation. We implement an abstract
notion of a cell assembly as a basic computational unit
for both the encoding of information (i.e., a collection of
features) and learning of temporal sequences.

4. The simulation environment

The current implementation of the model was conducted
in the Xanim dynamic simulator (Schaal, 2000), to

model a pair 30 degrees of freedom (Head: 3, Arms 7
*2, Trunk 3, Legs 3*2, Eyes 4 D.0O.F.) humanoid robots,
(see Figure 1 left). The external force applied to each
joint is gravity. Balance is handled by supporting the
hips; ground contact is not modeled. There is no colli-
sion avoidance module. The dynamics model is derived
from the Newton-Euler formulation of Rigid Body Dy-
namics. The simulation package SL has a modular struc-
ture that includes a motor servo, used to read the current
state of the robot/simulation and to send commands to
the robot/simulation; a task servo that allows switch-
ing between different tasks; a vision servo to collect data
from camera systems; and inverse dynamics and inverse
kinematics servos to allow the control of the robot from
Cartesian states. In the next months, the seriate nesting
experiment will be implemented in the mini-humanoid
Robota (Billard, 1999), see Figure 1 right.

5. The model

The model consists of a hierarchy of connectionist archi-
tectures, whose basic computational unit is depicted in
Figure 2. The first two layers of the network implement
a mechanism for object recognition and an attentional
mechanism, respectively. At the last layers a formal im-
plementation of a cell assembly is used for information
representation and temporal learning. The layered ar-
chitecture was developed to account for temporal inte-
gration at different time scale levels. The reduction of
the hierarchy to three levels, results in a tight coupling
between the conceptual/structural layer (i.e., cell assem-
blies) and the perception layer. The output sent to the
motor system is represented by the coordinates of the
target object, which are transformed by Xanim servos
into commands to the simulated robot links.

Let us describe how the system functions. At the first
parsing of the visual scene, the agent creates a list with
the objects present in the image at their initial locations.
The object recognition (OR) subnetworks from all lo-
cations are activated and remain active as long as the
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Figure 2: Basic computational unit of the hierarchical network consisting of three interconnected components: a saliency

signal, an object recognition subnetwork and a cell assembly unit. The saliency signal is computed by integrating the feature

contrast with top-down cues. The activity of a winning salient unit is modulated by inhibition of return. An object recognition

unit is feeded from 5 feature units. A subnetwork is formed from all co-located objects. Both attentional and recognition

components are taking input from an external layer. The cell assembly unit receives a saliency signal and it is grounded in

the visual feature layer.

objects are in the visual field (i.e., objects can become
invisible if they are hidden/embedded by other objects).
Saliency (SA) is computed in a distributive manner at
all locations of the visual scene and the unit with the
highest activation wins the focus of attention. A win-
ning salient unit enhances the object representation and
allows the creation of a ’copy’ of the information from
that location in space. This copy is referred to as a cell
assembly (CA) and it is created whenever a significant
variation (i.e., event) in one sensor has been detected. At
the creation, a cell assembly unit inherits all the features
currently active at that location.

Learning of event sequences is implemented by map-
ping each new event-processing state of the system into a
distinct CA. This represents a method to unfold tempo-
ral relations into spatial structures, with the advantage
of preserving the representation of information. Knowl-
edge is represented in the weights of the CA features and
learning at this level can aim for variance reduction and
generalization. Learning of precedence relations takes
place in the weights of all simultaneously activated CAs.

5.1 Attentional module

The attentional module consists of a mixed bottom-up
and top-down neural network model. Studies in psy-
chophysics suggested that the contrast of the features
with respect to the contextual surround, rather than
the absolute values of the features, drive the bottom-
up attention (Nothdurft, 2000). We compute bottom-up
saliency based on the processing of the contrast of two
low-level features: color and motion. The focus of atten-
tion is deployed to the most salient location in the scene,

which is detected using a winner-take-all strategy. Once
the most salient location is focused, the system uses a
mechanism of inhibition of return to inhibit the attended
location and to allow the network to shift to the next
most salient object (Itti and Koch, 2001).

The activity of the saliency map is further modulated
by top-down cues, which focus the attention in accor-
dance with the learned significance of each cue (i.e., to
follow the gaze of the demonstrator or to look in the
direction of the hand pointing). The current version of
the attentional module includes as top-down cues: gaze
following and skin color preference.

5.1.1 External units

Each feature contrast unit V¥ receives input from two
pairs of three external units V¥, that encode either the
color (R,G,B) or 3D location (X,Y,Z) of an object. Color
contrast is computed using one value of the sensor at the
object location and N = 6 values corresponding to 6 con-
tact points with the surrounding context. The motion
contrast is computed using one reading of the speed for
the object and N context readings corresponding to the
speeds of all objects in the visual image.

The activation of the external units corresponding to
the component j read at location [ are given by:

if location 1 is visible at t,
otherwise,

v ={ )

N
1
‘/}];?icontezt (t) = N an},l’ (2)
k=1



where t is the time and n;; is a normalized value between
[0,1] of the value returned by the sensors.

5.1.2 Contrast units

The activity of a feature contrast unit is given by the eu-
clidean distance between the components of the feature
corresponding to the object and to the context surround-
ing the object:

3
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where F is the sigmoid function F(z) = 1/(14+e~%). For
simplification of notation, we consider that the activity
of each unit corresponds to a location I, which is not
shown in the equation.

5.1.3 Saliency units

The set of bottom-up features is C
{color-contrast, motion-contrast}. The saliency of
a certain location is also modulated by top-down
processes. We consider only one top-down cue
T = {gaze-following}. Skin preference is integrated at
the level of color contrast processing.

The activity of a saliency unit ¢ is given by the
weighted summation of the features 5 € C' and the con-
tribution of the top-down cue k € T':

|| €|

(Zwk Vk +Zw

where the activity of the top-down unit is given by:

VSA ) (4)

1, if object i is referred by the top-down cue
0, otherwise.
()

Weighting of the bottom-up features w® and top-down
cues w7 results from the satisfaction of a number of con-
straints, as described in Section 5.2.

All units in the saliency map compete according to a
winners-take-all strategy and the winning unit ¢ sets the

activity of its output unit to 1:

VSA O( ) {

viw={ g

, if VIA®) >
0, otherwise.

‘/;‘SA (t)a V] 75 i (6)

The activation of an output unit is sent both forward to
the cell assembly layer and backward to the saliency map
where it triggers the activation of the inhibitory unit.
The activation of the inhibitory unit is a function of
the input from the salient unit and its previous memory:
(7)

VI(t) = F (VP H(t —to) + 7 - Vit~ 1))

k,

where 7;; is the time decay rate of unit 7, and H is a
function given by the equation:

]., ift= to
0, otherwise.

Ht - to) = { ®)

VSA is the activity of the winner unit and #o represents
the time when the output of the inhibition unit is trig-
gered, and it is a function of the saliency unit activation
o = f(VS2). When the activity of the inhibitory unit
reaches its maximum it shunts down the salient unit.
After the inhibition unit is activated, the activity of a
salient unit will be given by:

T |C]

(Zwk Vk +Zw VC

The larger the value of the unit saliency, the longer it
will stay active, but also the higher will be its inhibition.
After shutting down the salient unit, the inhibitory unit
preserves a memory of its activation, which decays in
time and allows the unit to win again further in future.

VA () ~Vi®) ()

5.2 Setting up the attentional constraints

A number of 6 constraints were defined to describe the
internal model of the imitator on the significance of the
top-down cues relative to the bottom-up features. The
constraints are:

1. Skin color preference. For any static scene, the
bottom-up saliency (equation 4) of an end-effector (i.e.,
hand) should be higher than that of any object.

2. Preference for moving stimuli. For any moving
object its bottom-up saliency should be higher than that
of any static object, including the end-effectors.

3. Motion versus skin color preference. Saliency
of a moving object should be higher than that of an
end-effector moving at a slower speed, but smaller the
the end-effector saliency moving at a comparable speed.

4. Gaze following versus moving objects. The
global saliency of any static object located in the focus of
attention should be higher than the bottom-up saliency
of any moving object located outside from the focus.

5. Gaze following versus skin color. The global
saliency of any static object located in the focus of at-
tention should be higher than the bottom-up saliency of
any static end-effector located outside from the focus.

6. Gaze following versus moving end-effectors.
The bottom-up saliency of a moving end-effector should
be higher than the global saliency of any static object
placed in the focus of attention, but smaller than the
saliency of an object moving in the focus of attention.
The weights w® and w' were set after solving the system
of equations given by the 6 constraints. Figure 3 illus-
trates the functioning of the attentional mechanism. In
Figure 3a are shown the evolution in time of the saliency
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Figure 3: The time evolution of saliency output (SA—QO) vs. inhibition activation. (a) The shift of focus between two competing
end-effectors is shown. Note that inhibition shunts down the saliency unit (SA) (not shown in figure). (b) Competition between
the resting hand, acting hand and acting object is shown, in the presence of the gaze signal (indicated by the arrows).

output vs. inhibition activation of two end-effectors that
compete for the focus of attention. Figure 3b illustrates
the shift of the focus in the presence of the demonstrator
gaze signal. When gazed, the acting cup wins and main-
tains the focus of attention for a long period. Different
locations can be attended to, due to the inhibition mech-
anism. As a result, a powerful selective mechanism im-
plements an information-processing bottleneck of what
is learned at the higher levels of the system.

5.3  Cell assembly module

The cell assembly module consists of the OR network
and the CA layer (see Figure 2 right). The object recog-
nition module accounts for visual awareness of an object,
based on the automatical processing of five features in
F = {color, shape, size, rotation, motion}. Information
processing at the CA level is grounded in the accurate
representation of the world state constructed here. The
activation of the external units is given by Equation 1.

5.3.1 Feature units

The activation of a feature unit is given by:

AOR f(i(%E(t))?)

J=1

(10)

For the detection of an event, the signal variation AV;¥
is integrated over time and compared with a positive,
arbitrary set threshold ©F. A feature is referred to as
being active if at least one event has been detected.

5.8.2  Object recognition units

The activity of an object recognition unit ¢ is given by
the weighted summation of the features j:

Ll

(ZwOR VF )

VOR

(11)

The strengths of the weights wJQiR is subject of adapta-
tion according to an Anti-Hebbian learning rule:

n- (Vi (1) —wi(t = 1))

where 7 is the learning rate. The OR units are used dur-
ing associative learning between word form and semantic
meaning, to ground referrents for individual objects.

AwGi(t) =

Jt

(12)

5.3.83 Cell assembly units

A cell assembly unit ¢ is constructed whenever a new
event has been detected by the OR subnetwork, and it
is defined by a set F'CA of features simultaneously active
at some location in space: FCA = {j € F|f(;5 AVE >
G)JF} In what follows we will refer to the cell assembly’
features, as its feature constraints.

Once it is created, a cell assembly can be in one of the
following states: satisfied, maximally satisfied, activated
and silent. Satisfaction is a graded measure computed
in rapport with the current state of the external world
(CSW), reflected in the weights of the OR network. A
cell assembly is satisfied, if its feature constraints are
satisfied by the CSW above a certain threshold arbitrary
set for all the CAs. A maximally satisfied CA is the CA
whose feature constraints satisfy best the CSW. A CA is
active if its activation is above an arbitrary set threshold.
Otherwise it is considered silent.

An activated CA learns a general representation of the
objects present at that location. At the creation of the
CA;, the weights w§AF are initialized to the values of
the weights of the obJect recognition network. During
the demonstration of the task, the weights are subject
of Anti-Hebbian learning, meant at preserving only the
invariant features:

n- VO @) (1= AVFO)(VF (1) - wfA @)

A’LUQA-F (t) = Ji
+VE @)(-ufA®))

Jt

(13)



where 7 is the learning rate.
In the current version of the model, constraint satis-
faction is implemented by learning for each CA a feature

threshold using the formula: @A () = (@CA Ft—

D-n+Y. jeRCA w§h - VE(t )), where n represents the

current time step. A disadvantage of this implementa-
tion is that different combinations of features can satisfy
the threshold. Ongoing work is aimed at developing a
more efficient framework for general resolving of multiple
constraints satisfaction.

The activity of a cell assembly is a function of the
global saliency V;° A=0 of the location for which it was
build, the level of feature constraint satisfaction, and the
memory of its previous activation:

n+1

VO = F(SPMF (1) + i VAR -1)  (14)

Satisfaction of the feature constraints is given by:

A

SEAF () = H(5,00) - VA0, (1)

where

4 min (G)?A'F(t) e FORw RVE( ))
B pax (@?A'F (t), 3 ;cpor Wi -V (t))

and 6, is an arbitrary set threshold. H(z,y) is a Heavi-
side function that outputs z, if z is greater than y, and 0
otherwise. A cell assembly 1 is satisfied if SCA F'>0and
becomes unsatisfied, either if A/B < 6, or 1f VSA 9=o.

The satisfaction degree is a positive, symmetric mea-
sure of the distance between the CA learned bias (i.e.,
what it knows) and the current state of the world. FPOR
represents the set of currently active features of an OR
network (defined as in equation 15), and it is subject of
adaptation with every change in the CSW. By contrast,
the set of active features FCA of a created CA remains
constant, and with the creation of any new CA, early
CAs tend to satisfy in a smaller manner the CSW. This
is the case only, until the system returns to the initial
conditions, what in our system happens due to the re-
cursive nature of the nesting cups task. The activation
of a CA that left the focus of attention decreases as a
function of the decay rate 7;;.

5.4 Learning of precedence relationships

A satisfied CA can learn a set of precedence links wCA P

from other activated CAs. Precedence in the system is
encoded in the relative order between the construction of
the CAs. To deal with time dependencies larger than the
time decay rate, we have introduced the graded measure
of CSW satisfaction. The CA activation is a function

of the time lag between the moment when the CA best
satisfied the state of the external world and the CSW.

Learning of the precedence links is defined as a func-
tion of the rapport between the activities of two CAs.
For a postsynaptic C' 4;, a subunitary rapport VjCA / ViCA
encodes the temporal precedence of C'A; and the dis-
tance between the moments when the two C'As maxi-
mally satisfied the state of the world. Adaptation of the
weight from CA; to C'A; takes place by:

AwSA TP

(t)_{ n-VEA - (rji —w§AP (- 1)), if ry <1,
Jji

K]
n- VCA (SwGh I;(t — 1)) , otherwise,

where rj; equals the rapport of CAs activities VA /V,7A.
The learning rule favors strengthening of weights due to
systematic causal relationships between assemblies. A
CA who systematically precedes another cell assembly,
will become a reliable predecessor and the strength of
the connection will reflect the temporal lag between the
CAs satisfaction. On the other hand, a large fluctuation
of the order in which CAs are satisfied, will decrease the
weight, reflecting the fact that there is no systematic
causality between two CAs. The gradual adjustment of
the weight is ensured by the small value of the learning
rate (i.e., » = 0.001), which also avoids the formation of
strong connections for accidentally perceived events.

5.4.1 Retrieval of the time structure

The activation of a CA during retrieval depends on the
satisfaction of feature and precedence constraints. If the
CA; feature constraints satisfy the CSW, than its ac-
tivity is given by Equation 15 and it is marked as be-
ing satisfied. If this is not the case (i.e., the feature
constraints do not satisfy CSW, but the C'A; is active),
CA; becomes a sub-goal of the system and it can be in
two states: achievable or postponed. A CA is achievable
either if there is a minimal distance between the CSW
and the satisfaction of its feature constraints, or if its
precedence constraints are met. The minimal dissimilar-
ity between the CSW and a CA state is met if the CA
can be satisfied by acting upon only one dimension (i.e.,
motion or rotation). A CA is postponed if its precedence
constraints are not met.

The activity of a CA during retrieval is given by:
VA (E) = F(STAT (1) + SPAP (1) + s - VAt - 1)) (16)
where SCAP(t) represents the level of satisfaction of
precedence constraints. P-4 represents the subset of the
precedence links whose weight is higher than an arbitrary
threshold: PE4 = {w§AP|wfAF > 6,} Satisfaction of
the precedence constraints is deﬁned in a similar manner
with the satisfaction of feature constraints:

HE 8, VSAOW, D)
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where

A min (OFAP() - LY, pon why - VEA(D) - S7AT)

B ax ((’)?A-P t)-1, ZJ‘GP,-CA w?i . V}CA (t) - S]QA‘F)

and 6, and H(z,y) as above. The threshold OY*F was
computed as the arithmetic mean value of all products
w§AP-VCA corresponding to a satisfied CA;. I € [0,1] is
defined as the smallest percentage of the precedence con-
straints necessary to pass the threshold condition. Prece-
dence is met by ensuring that the threshold @FAF (¢) - T
is reached only by summing up the inputs in the order
they have been learned (i.e., high activations associated
with strong weights). The condition that only a satisfied
cell assembly C'A; can activate a successor SJCA'F >0is
imposed to force the system to act externally (as opposed
to the internal simulation) towards minimizing the dis-
tance between its goals and CSW.

An achievable C' A; can become satisfied, by trigger-
ing two types of actions: (1) send a motor command to
modify the CSW (i.e., if it is immediately achievable);
(2) call-back its predecessors, to increase their probabil-
ity of being satisfied. The call-back is executed by set-
ting the top-down saliency of the called CA to 1 and it
is necessary to ensure that all predecessors are satisfied
before the goal satisfaction.

6. Results and Discussion

6.1 Analysis of the system behavior

In the experiments presented here, imitation is bottom-
up driven by the saliency of the objects/links in the vi-
sual image (see the forward model in Section 7). The
agent starts by gazing the end-effectors and shifting be-
tween these and the objects in the image. As general-
ization is still limited (see discussion in Section 6.2), the

CAs are activated only by the learned objects. In Figure
4 is depicted the CA structure resulted after two cups are
nested. Activation enters the structure through the sat-
isfaction of the CAs corresponding to static objects and
end-effectors (bottom side of figure). We refer to these
CAs as visible, in contrast to hidden CAs, which are not
directly reachable (i.e., satisfiable) from the initial state.
Each of the visible CAs is attached to a set of successors,
to which activation is distributed in parallel. A hidden
CA cumulates the activity received from its predecessors
and checks for the satisfaction of precedence constraints.
If this happens, the CA becomes achievable (i.e., a goal)
and it triggers the motor commands necessary to bring
the CSW into a state where its satisfaction is possible.

Figure 5 shows the actions taken by the system for
the completion of a sequence. Precedence constraints are
first met for the hidden CA corresponding to the shaping
(i.e., rotation) of the hand to grasp the cup. Next CA
achievable is that for carrying the cup 1 towards cup 2,
who calls all its predecessors (see Figure 4), to ensure,
for instance, that grasping the cup will be performed
before carrying it. In parallel with the activation these
goals, there are short activations of the final state CA,
corresponding to the image of cup 1 into cup 2. The sys-
tem exhibits both sequential (i.e., carrying is activated
only after the hand-shaping is satisfied) and parallel ac-
tivation of the goals (i.e., carrying with embedding) as a
function of the level of the satisfaction threshold for the
precedence constraints.

For any action to be taken, the system must send to
the motor servo the coordinates of the target and recip-
ient objects, which at any moment must be unique. A
coherent behavior can be acquired only if several external
constraints are applied: (1) first come-first served, that
is, the goal first activated sets its target cup; (2) continu-
ity of action, that is, once a cup become object of action,



Figure 5: Imitation of a two steps embedding task. The
actions taken by the agent are, in order: shape the hand,
grasp cup 1, carry cup 1 to cup 2; shape the hand, grasp cup
2, carry 2 to cup 3.

motion is continued until the current goals satisfaction.
Parallel vs. sequential activation of the goals represents,
in our view, an appealing feature for the modeling of
cognitive and linguistic processes.

6.2 Generalization capacity

Generalization is currently limited by the fact that a dis-
tinct CA is created corresponding to each location and
event. Learning at the cell assembly level faces a general-
ization vs. seriation problem. Strict sequencing requires
the creation of distinct CAs for each new system state.
In order to generalize, however, a CA must be able to
perceive different objects and events. A possible solution
is to allow the development of higher CAs levels, where
the object position can be discarded and generalization
over the properties of several objects can occur.
Another solution can emerge exactly from what we
thought to be a limitation, that is, the fact that each
CA perceives only co-located objects. At the first pars-
ing of the visual scene, the system makes a distinction
assumption, that is, to build a distinct representation for
each object. Whenever two objects come into contact,
a new representation (CA) of the event is constructed,
grounded in the recognition network of both objects.
Presume that the hand grasps cup 1 and carry it to the
position A, then grasps cup 2 and carry it to position B.
Despite the different trajectories, the CAs correspond-
ing to the manipulation of the objects, share the OR
network of the hand and they are activated, at certain
levels, whenever the hand is focused. Each of them will
be able to perceive and learn, through the mediation of
hand representation, the features of the other object, and
develop a general representation of the type ’hand car-
rying any cup’. Because the level of activity of a CA is a
function of the feature constraints satisfaction, it will be
activated, and generalize only over sets of features which
are not too dissimilar to what it knows already (i.e., any

cup, bot not a cube). This behavior may be described
as ’better perception through action’ (Metta and Fitz-
patrick, 2002), because the agent can learn more about
the environment by acting upon it.

For the simulation of the seriate cups task, attention
must be paid to the acquisition of the size concept. By
implementing Anti-Hebbian learning the system discards
variant features, and the agent will infer that size is not a
significant parameter for the task. However, by assigning
an increased saliency to the target states (i.e., nested
cups), the agent can compare the objects, and learn that
the difference in their affords their embedding.

7. Accounting for the developmental dif-
ferences in seriating strategies

The differences in the infants’ nesting behavior can be
attributed to internal deficits at: encoding, retrieval
or both. At encoding, we considered only one limita-
tion, that is, an embedded object disappears from the
view and its memory is only preserved in the activity
of previously created CAs. The generalization capac-
ity of the system plays an important role during en-
coding. Our model suggests, so far, that the neural
structures grounded in the hand representation and in-
volved in manipulation, provide the substrate for an
over-generalization and lead to the formation of an en-
hanced representation of the type ’hand moves any cup’.
This general representation would be responsible for the
infants generalized behavior ’put cups into each other’.

For the retrieval of the sequence, we propose three
hypothetic models:

1. The forward model considers that retrieval takes
place through the forward, bottom-up activation of the
hierarchical structure. Activity is driven in by the
saliency mechanism and actions are chosen as a func-
tion of the saliency, as well as of other constraints (i.e.,
contiguity, coherence of action, principle of least effort).
Goals are satisfied in the order they become activated.
Initial priming it is also possible. This model is put to
test to account for the first developmental stage of in-
fants seriating strategies.

2. The call-back model considers that retrieval takes
place by activating one or two goals and driving the sys-
tem towards their completion. The difference to the pre-
vious model, is that the system starts from a hidden
state, rather than from a visible one, and attempts the
satisfaction of the activated goal, by calling its prede-
cessors. The behavioral progress is due to the capacity
during learning to focus on the target states of the task
(i.e., the embeddings) and to store them in the long-term
memory. After one goal is achieved, another one can be
satisfied. The system will exhibit a seriating capability
corresponding to the second developmental stage.

3. The multiple constraints satisfaction model
considers retrieval as a task of reproducing the entire se-



quence demonstrated. The system activates in turn all
the sub-goals of the final target state, and does not trig-
ger action unless the complete sequence was not simu-
lated first. This process can be defined as multiple satis-
faction of all the sub-goals. External action is driven to-
wards the minimization of the distance between the final
goal (i..e, the complete seriate structure demonstrated)
and the current state of the environment. During learn-
ing, the increased saliency of the target states allows the
construction of a higher CA level where only target goals
are stored. At this level, saliency during demonstration
is mapped into intentionality during imitation.

8. Ongoing work

Where does the linguistic input fits into the seriate cups
task? In our view, it represents another source of infor-
mation to be integrated by a multiple constraint satis-
faction process. We embrace Seidenberg and McDonald
(1999) unified view on the bootstrapping mechanisms,
defined as components of a general constraint satisfac-
tion process that exploits correlations between multiple
types of information. Preliminary experiments using
an associative architecture and cross-situational learn-
ing have been run to learn the meaning of a small set of
words, from sentences paired with the actions of the sim-
ulated agent (i.e., "Look the small red cup’). Our method
was that of autonomous bootstrapping (Brent, 1996),
consisting in extracting tiny bits of linguistic knowledge
and using them for further analysis of the inputs. Fur-
ther development of the system is towards the processing
of multiple cues, such as word order and collocations, as
well as integrating contextual constraints. The goal is to
study not only how the linguistic function can make use
of the sequence detectors developed for the seriate abil-
ity, but also how goal-directed action can use top-down
linguistic cues to discover 'what’ and "how’ to imitate.
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