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Spiking neural networks represent a powerful tool to investigate how cognitive functions
emerge from the properties of basic components functioning cooperatively. Significant
efforts have been made in the last decade towards the creation of simulation environments
adjusted to the specifics of computation with spiking neurons. In this article we address
efficiency issues in the simulation of pulsed neural networks on single processor systems.
Both literature and novel algorithms are investigated with respect to their time and
memory effeciency. The techniques and concepts presented make feasible the simulation
of large networks or high neural activity rates.

Keywords: Event-driven simulation; pulsed neural networks; spike response model; high
neural activity rates.

1. Introduction

Computer simulations of the nervous system play an increasingly prominent role
in understanding the way neurons process information. Spiking neural networks
received special attention after experimental evidence has accumulated to sug-
gest that biological neurons use the timing of the spikes to encode and compute
information'3%:33, Synaptic modification as a function of the timing between sin-
gle spike events (i.e., spike-timing dependent learning) has been studied in mod-
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els of temporal pattern recognition®®, temporal sequence learning*, coincidence
detection'®, directional selectivity?®. It was shown that computations with spik-

ing neurons are of great interest for scene segmentation®’, contour integration3,

movement control?®, binding through synchronisation3744.

Previous work on the efficient simulation of spike-processing neural networks has
indicated that available simulators that reach high performance for rate-coding net-
works are not appropriate for networks of spiking neurons?**¢. Efficient modelling of
large scale spike-processing networks requires the design of simulation environments
dedicated to the specifics of computing with temporal patterns. Promising work
has been done by creating dedicated hardware for spike-processing networks3%:19
mapping the simulations onto parallel computers 12-6:16,

In this article we describe a series of algorithms for time-efficient simulation
of spiking neural networks on single processor architectures. By spiking or pulsed
neural networks, we understand networks of simplified neural models (i.e., integrate-
and-fire, spike response model). The reason why we focus on the efficient design of
serial algorithms is twofold. Firstly, the increased costs for acquisition and main-
tenance of high performance parallel computers justify their use for a reduced
number of applications. That is why most commonly, fundamental research on
cognitive modelling of brain phenomena is developed on single processor systems.
Secondly, even though parallelisation is possible, the most efficient way to imple-
ment it is to decompose a large network into loosely-coupled subnetworks that are
mapped onto different processors in such a way that minimises the inter-processor
16,4 This way, one is still faced with the problem of simulating large
number of neurons in a serial manner.

The remainder of this article is organized as follows. In the second section, we
present the formalism of a simplified neural model, as it was implemented in our
work. The third section is dedicated to a discussion of general design considerations
for discrete-time simulation of pulsed neural networks. In section four, several event-

or

communication

driven algorithms are investigated with respect to their effectiveness in simulating
large number of highly inter-connected neurons. We present two novel algorithms,
the quick-sort pool strategy and the circular priority-queue architecture, and we
compare their performances with state-of-the-art literature algorithms.

2. Spike Response Model

The nonlinear dynamics of a spiking neuron can be accurately captured by a sin-
gle variable model, which has a huge computational advantage over comprehen-
sive mathematical models, such as the Hodgkin-Huxley equations. In the formalism
known as the simplified Spike Response Method (SRMj)'®, the dynamics of the
neuron are encoded in two sets of kernels, representing the effects on a unit of its
own spikes (n) and those of the other neurons (¢). The membrane potential V; of
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the neuron ¢ is computed at each time moment ¢ as follows:

Vi) =t —t)+ Y wy Y et — 1) (1)

€ Der

where I'; denotes the set of neurons presynaptic to ¢, Fj is the set of all firing times
of neuron j and the w;; account for synaptic strengths between cells.
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Fig. 1. Representation of spikes integration and generation in the spike response model. See in
text for the meaning of notations.

If the sum of all excitatory and inhibitory contributions reaches a threshold
value, the presynaptic neuron generates an output spike at time t; , which travels
along the axon, and reaches the postsynaptic neuron after a delay d. The postsy-
naptic response kernel € evolves as a function of the difference s = ¢ — tg-f ) _ g

e(s) = exp(——) H(s) 2)

Tm

—~

with

X

(S):{l,ifszo 3)

0, otherwise,

where H is the Heaviside step function and 7, represents the neural time constant.
After emitting the spike a node enters a refractory period described by the kernel n
which, in our simulation, is simplified and depends only on the difference between
current time and the last spike time u =t — tl(f):

() = —exp[—u™ +n] H'(u) © (4)
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with

iy Joo,if0<u<1
Hiw) = { 1, otherwise. 5)

Here, @ is the threshold and m and n are constants which give the decay rate of
the refractory period.

Stochastic behaviour was accounted for in the model by adding noise in the
generation of the axonal delays. In this implementation, the transmission delay is
proportional with the Euclidian distance D between the presynaptic and the post-
synaptic node. Thus, the value of the delay d is not fixed, but chosen stochastically
from a gaussian distribution p(D) with mean D.

3. General design considerations for efficient discrete-time
simulation

To compute a network of simplified neural models, a continuous-time period is
divided in intervals of constant duration T, referred to as time bins or time steps22.
Within a time slice the network state is computed, by integrating for all neurons the
inputs they receive and their internal state variables. The output spikes generated,
become input to postsynaptic neurons during the following time slice. For the design
of an efficient simulation of pulsed neural networks, one has to answer three related
questions: (i) how to compute the internal state of a neuron, (ii)when to integrate
the activity of each neuron in the network; (iii) which spikes should be delivered.
Let us consider each of these questions in turn.

Firstly, the question of how to integrate, addresses effciency issues at neural level
(see section 3.1). Compared to the detailed modelling of neural behavior®!?, less
computational effort is generally required for the integration of activity of simpli-
fied neural models (see 2¢). Nevertheless, optimization at this level becomes essential
when the activity of large number of neurons must be integrated. A second crucial
design issue consists in answering the question of when to integrate each neuron’s
activity, in such a way to minimize the number of neurons computed at each time
clock (section 3.2). The third question concerns the optimization of inter-neural
communication management, by reducing the overall number of spikes which are
delivered at any time moment. We will discuss separetely the management of ex-
ternal stimulation (section 3.3) from inter-neural communication (section 4.1).

3.1. Optimisations at the neural level

Simulation of a simplified neural model requires the consideration of a number of
general design issues.

3.1.1. Connectivity scheme

Neurons in the brain are not fully connected®. Accordingly, biologically plausible
architectures are made of spiking neurons sparsely connected in a non-random fash-
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ion. One way to store the connectivity of a neuron during a simulation, is to use a
list. If the list contains addresses of the target neurons it is referred to as sender-
oriented. Otherwise, if it stores the addresses of the input neurons, it implements
a receiver-oriented connectivity scheme. Previous simulation work suggested that a
sender-oriented scheme is more appropriate for spike-processing networks??3%. That
is, because spiking neurons have a discrete output and the sender-oriented scheme
assures that only active connections are computed.

It is generally considered, that the receiver-oriented scheme is more advanta-
geous for continuous output functions that cause constant activity on synapses. In
ref. 28 we compared the performances of the two connectivity schemes for spiking
neurons simulations. Our results suggest that the receiver-oriented scheme is less
advantageous even in the presence of high frequencies of spike communication on
synapses.

3.1.2. Integration method

Another aspect to be considered at the neural level concerns the integration of
the membrane potential (see Figure 1). The computational effort at this level de-
rives primarily from the integration of the synaptic inputs. The dynamics of neural
activity in simplified models such as SRM, merge stochastic and deterministic com-
ponents. The first component is associated with the random nature of the sequences
of spikes and the second expresses the evolution of the neural state between two suc-
cessive afferent spikes®. Instead of computing at each time step, the weighted sum
of the inputs, the integration method can exploit the deterministic evolution of the
postsynaptic potential. The sum of past presynaptic spikes is stored and decayed
every time the contribution of a new spike has to be added. Besides reducing the

simulation time, this method also has better memory management properties®28.

3.1.3. Small internal potentials

An immediate improvement of the simulation speed can be obtained by neglecting at
integration, small values of postsynaptic potentials. Since the postsynaptic potential
value decays exponentially in time, many postsynaptic potential values approach
zero. One possibility is to tag the postsynaptic values as invalid, if they have been

received too long ago, and not compute them anymore3?.

3.1.4. Numeric precision

Finally, in order to reduce the time spent per neuron integration, instead of us-
ing floating-point arithmetic, fast-fixed point arithmetic may be used without any

35,36 Another way of accelerating the calcula-
4,32

degradation in network performance
tions is by looking up numerical values in a table, rather than calculating them
For a discussion in more detail on the requisite precision for computation with
spiking neurons see ref. 23.
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3.2. Advancement of the simulation time

When simulating neural networks on digital computers time proceeds in discrete,
basic time units. Two kinds of discrete simulation can be distinguished with respect
to the way time is simulated. In a continuous time simulation, time is advanced in
steps of constant size and integration of all units is performed at each time step'!.
The time-driven protocol represents almost a standard for detailed neural modelling,
because it ensures the time resolution needed for the integration of the differential
equations?.

An alternative to the continuous approach is to use a multi—order variable time
step integration method. In this case, the increase in performance can be substantial
for problems in which all states vary slowly for long periods of time. For instance, fast
spikes are integrated using a fine—grained clock, but during the interval between
spikes a larger time step can be used. Neuron'? is a simulator which implements
such an approach (i.e. the CVODE algorithm) as an alternative to the fixed time
step method.

3.2.1. FEvent-driven strategy

Drawing inspiration from the techniques used in the simulation of discrete
systems'!, modelling of spiking neurons can discretise the computation of neural
state at different types of events occurrence. An event-driven simulator for spiking
neural networks was first proposed in 46, based on the management of a queue
of scheduled events. In 46, a specific event is generated and inserted in the queue
for each modification of every element in the network (i.e., a neuron spike, end of
refractory period, end of post-synaptic current pulse).

The idea of an event-list protocol was further adopted in 22, 35, 23 to repre-
sent in an efficient way the sparsely-coded signals generated in a network of spiking
neurons. This strand of research takes a neuron-oriented approach to asynchronous
simulation, which favours parallelisation by handling separately the neural opera-
tions from the inter-neural communications®3. In this case, simulation is driven by
the computation of different phases of information processing at neural level:

(i) input phase, when spikes are distributed and target neurons increment their
internal potentials;
(ii) decay or filter phase, when the internal potentials are decayed;
(iii) output phase, when neurons compute their membrane potentials and emit
spikes if necessary;
(iv) learning, when parameters are adapted.

More recently, an event-oriented approach to asynchronous simulation emerged
as a natural choice for the simulation of large number of highly interconnected
neurons®?-29:32:8 The core of an event-oriented algorithm consists of processing
events generated during simulation. Events can be defined at different levels of
grain:
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(i) spike reception, which determines the integration at the neural level of the
new input with the membrane potential;
(ii) spike generation, which requires the delivery of delayed spikes on output
connections;
(iii) external stimulation, which requires specific handling of the signals;
(iv) communication messages that are used for both intra-neural and inter-
neural communication®.

The main challenge in the design of current pulsed networks simulation is repre-
sented by the efficient management of huge pools of events generated during inter-
neural communication. Original and state-of-the-art algorithms that address this
issue are presented in section 4.

3.2.2. Performance study of the event-driven vs. time-driven strategy

Let us illustrate the major advantage that the event-driven strategy has over the
time-driven approach. This is, time scaling with the decrease in the network activity.
Each strategy has been separetly implemented for the simulation of a spiking self-
organizing feature map. The learning rule was adapted from Ruf and Schmitt (1998)
and is given by the formula:

Tout - Ti

ﬁ, any 1€ NC (6)

Awgj = 1 (€55 — wij)
where €;; is the postsynaptic potential from presynaptic unit j and is given by Eq. 2
with s = T; =T —d, 1 is the learning rate, 7; and 7T are the times of the first spikes
of neurons i, respectively j and N, is a spatial neighborhood of the winner unit.
A similar rule to Eq. 6 is applied for learning in lateral excitatory and inhibitory
synapses. The synaptic efficacy of a lateral connection is modified depending on
the activity of the connected neurons and upon the arrival time of the presynaptic
spike. For a detailed description of the self-organizing process we refer the reader
to ref. 28.

Self-organisation of a feature map is usually a time consuming process, due to the
specifics of the learning procedure, which employs large number of training cycles
and input patterns in order to ensure the accurate mapping of inputs?*. Given an
untrained spiking map, the neural activity starts out spreading over a large part
of the network (i.e., full responsiveness of the map). However, in several hundred
cycles, self-organzation of lateral and afferent synapses leads to a specialization
of the network response, which converges to a stable activity bubble including a
reduced number of firing units.

Because the event-driven algorithm computes in each time slice only the active
fraction of neurons, it highly benefits from the localisation of the network activity.
By contrast, the continuous time procedure computes the activity for the entire
network, independently of the network activity (see Figure 2). The improvement
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Fig. 2. Comparison between a straightforward event-driven strategy and a continuous, time-
driven algorithm for a self-organization process. Computational times per training cycle are shown
for the event and time driven algorithms, for two network sizes N = 256, 576 units. The self-
organization task consists in the development of directional selectivity in a feature map of spiking
neurons with Mexican-Hat shaped lateral connectivity. Note that the frequency of neural activity
decreases from 100Hz during first 100 cycles, to about 30Hz at the end of training.

in performances is up to 10 times if the event-driven strategy is used for the self-
organizing process described.

3.3. Management of external stimulation

It is common for an event-driven simulation of spiking neural networks, to manage
the external spikes in a similar manner to the lateral spikes. A shortcoming of this
strategy occurs when the network is embedded in a very large population of neurons
that provide external background activity, meant for instance, to emulate the inputs
coming from other areas of the brain (see refs. 2 and 45). In this case, creating an
event for each external spike may excessively increase the size of the event list and
overload the computational effort of the simulation. Hence, alternative strategies
may be used to process the external stimulation.

Reutimann et al.>? proposed an event-driven strategy which can efficiently man-
age the impact of large populations of external units on a neural network. In this
case, the external spikes are not explicitly treated as synaptic events. Instead, au-
thors assume that if the synaptic background activity is irregular, the impact of the
external neurons on each simulated neuron of the network can be approximated by
a continuous random current injection with appropriate statistical properties (see
ref. 3). The state variables of the model are simulated starting from a determined
value at the preceding update time, along all the possible trajectories given by the
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different realisations of the input currents. When a relevant event occurs, the evolu-
tion is reduced to a single trajectory which is the one that has actually been followed
by the neuron. The advantage is that it is not necessary to integrate iteratively the
state variables during the interval between two relevant events.

Most generally, a distinctive treatment of the external stimulation can improve
the performances depending on the particularities of the model studied, that is, the
coding scheme and the frequency of the external input. In ref. 28, we implemented
a distinct management of the external stimulation, by exploiting the specifics of the
latency coding scheme used?®?”. Temporal coding by relative latencies considers
that input patterns are represented by the time advances of the afferent spikes
relative to an arbitrary reference time Ting (see ref. 27). We used the time interval
[0, Tint] to accumulate the effects of input spikes and deliver them once to the hidden
layers, instead of creating a distinct event for each external spike.

4. Novel techniques for efficient simulation

Today there is significant experimental evidence describing the existence in the

cortex of bursts of spikes with a high frequency of oscillation*!:2®
31,17

, which may play
a role in pattern recall in the mamalian hippocampus , or in processing of
auditory auditory stimuli'®. However, efficient simulation of high activity patterns
has never been considered a criteria in the design of simulation environments. It
has been argued that event-driven strategies are efficient solely for the simulation
of spiking networks with a low neural activity3®3°. Here is the reason.

The most expensive operation in the event-driven simulation is the insertion
of events into the spike list SL sorted by delivery time, with a complexity of
O(log, (length(SL))). As long as the insertion operation depends on the length of a
list that can grow tremendously (i.e., in the range of millions of events for a network
of 1000 units), the event-driven algorithm cannot qualify as an appropriate simula-
tion framework for high neural activity patterns. For an illustration of this issue, see
again Figure 2, and note the left upper part of the graphics showing the event-driven
algorithm’s performances. These time values have been recorded during the initial
phases of the self-organisation process, while the network activity reaches a spik-
ing frequency of 100 Hz. Note that in this case, the supplimentary load introduced
by the event-driven algorithm for the management of spike structures, reduces its
perfomances bellow those of the continuous time algorithm.

In this section we investigate different concepts and strategies, proposed by
the authors or from literature, aimed to improve the management of the events
generated during the simulation. A novel algorithm is described for the efficient
handling of the simulation of networks with high neural activity frequencies.

4.1. Multiple spike concept

Given a network with N neurons and a network activity per time slice a, a straight-
forward implementation of an asynchronous algorithm generates for aN firing neu-
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rons with S synapses per neuron a maximum number of a/V - S action potentials
in each time slice. Instead of creating a distinct event for each spike, the algorithm
may accumulate presynaptic spikes and deliver them together. We defined a data
structure, referred to as multiple spike, to store the synaptic weights m on which
spikes arrive at the same moment in time ¢ to the target unit . In 35 a similar
concept, was proposed, referred to as weight caching. To implement this concept
without a significant computational effort, spikes are cummulated for each unit,
over time periods comparable to the average transmission delay D in the network.

Implementation of the multiple spike concept leads to fewer spikes to insert in
the event list and fewer to distribute. The overall computational load per time slice
reduces by 1/m. In the most favourable scenario, m can equal S, in which case the
simulation time scales very well with the increase in the network activity. In the
worst case, when m represents just a low percent of S, the method cannot improve
significantly the algorithm’s performances. The value of m is affected by the numer-
ical precision used in the generation of the external stimulation and internal spikes.
A low numerical precision in the generation of time events favours the aggregation
of spikes and decreases the length of the event list.

4.1.1. Performance study

We compared the performances of several variants of a basic event-driven algorithm,
for the self-organization process described above.

1000

—&— Basic Event Driven
-6 - Multiple spike dt=0.1ms
800} & Multiple spike dt=1ms .

<~ Quicksort pool dt=0.1ms R
— o
6007 1
E
Q
S
£ 400} ]
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200t ]
0 Ank aliniil ; ‘ i Aainiin 4
0 5 10 15 20 25 30 35

Network Activity

Fig. 3. Computational effort in CPU time to integrate 1000 units vs. levels of network activity,
when different event handling methods are applied. The network activity is measured as the average
number of spikes in one ms divided by the total number of neurons for N=>576.
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To compare the algorithms we evaluated the computational effort, measured
in CPU time, to compute 1000 network units. One neuron computation involves:
integrate its activity, generate output spikes, and insert new spikes in the event-
list. Graphic 1 in Figure 3 shows the performance of a straightforward event-driven
implementation that maintains a chronologically ordered spike list. It represents
the baseline for the comparison of the algorithms implemented. Graphics 2 and 3
show the performances of an event-driven approach that implements the multiple
spike concept at different numerical precisions dt = 1ms and dt = 0.1ms. When
the multiple spikes strategy is applied to a series of events generated with a high
time resolution (i.e., d¢ = 0.1ms) the probability of spikes accumulating is low,
leading to an average improvement of 20%. By decreasing the numerical precision
(graphic 3 in Figure 3) the method becomes twice as efficient (i.e., up 50% reduction
of the computational effort). Graphic 4 illustrates the scaling of a novel algorithm
Quick-sort pool, described in section 4.2.2.

The benefits of implementing the multiple spike concept are more evident with
the increase in the network size and activity. For instance, a network of 3000 units,
with a connectivity rate of 8%, and an activity rate of 20% generates approximately
2 million spikes in about 15 ms of simulation time. By aggregating spikes at a time
resolution of 1 ms, only about 230 000 units are integrated. This leads to a reduction
of almost one order of magnitude in the number of unit computations that would
be done if each spike were to be delivered separately.

4.2. Efficient management of the event-list

The multiple spike concept was implemented by the authors to prevent the excessive
growth of the event-list. The method has certain advantages, but it is problem de-
pendent and it does not offer a general solution for the main question of the event-list
management. In the remainder of this section, we shall examine the performances of
four event-driven algorithms, two from literature and two novel algorithms proposed
by authors. These will be evaluated based on their effectiveness in managing large
dynamic data structures, and on their trade-offs between algorithmic complexity
and implementation constraints.

4.2.1. Layered delay-queues architecture

In 30 an ingenious solution is proposed by splitting the global event-list in several
FIFO queues each associated with a fixed axonal delay value (e.g., up to 16 different
delays have been tested). All neurons’ synapses are organised in matrix-structured
layers, each layer corresponding to one spike transmission delay value. When a new
event is generated it is directed to that queue corresponding to its transmission
delay. Because in the same queue, all spikes share the same transmission delay, the
spike generated first will be the oldest (top of the queue) and the most recent spikes
will be the last in the queue. Accordingly, the data structure implemented for spikes
management, needs no sorting and the insertion is done with O(1) complexity.
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The approach described by Mattia and Del Giudice in 30 performs a signifi-
cant reduction of the computational load incurred upon introduction of dynamic
synaptic efficacies in the network. The algorithm preserves a linear increase of exe-
cution time per neuron with the network size, compared with the N? scaling of the
computational complexity per neuron in the case of a basic priority queue policy.
The major drawback of the algorithm is the limitation of the synaptic delays to a
fixed number of values. Although formal neural models perform simplifications of
the biological neuron description in several respects, most of the models account for
noise effects on neural response, by introducing noisy thresholds, noisy integration
or noisy delays'®27. The transmission delays represents a new set of parameters
that have no counterpart in traditional neural network models, and which can be
used to read a temporal latency code'®*% or to enhance the flexibility of spiking
neurons by being subject of learning algorithms!®*2. By discarding the noise effects
on synaptic transmission, the approach proposed in 30 is suited only for a limited
set, of applications.

4.2.2. Quick-sort pool algorithm

The solution to the efficient management of events-list structure proposed by one of
the authors in 28 eliminates the insertion overhead while preserving the essentials
of neural behaviour (i.e., noise effects). Instead of performing the ordered insertion,
a new spike-event is simply added to an unordered pool of spikes, an operation
of complexity O(1). Since the events have to be processed in chronological order,
at constant time intervals, the simulation engine stops from processing spikes, and
chronologically sorts those events from the pool which will be processed in the next
interval. The time window during which processing of events takes place contin-
uously is referred to as Tyindow- It is similar to the safe window concept used in
parallel simulations to guarantee the temporal correctness of the algorithm'!.

The selection of spikes to be processed in the next time window is performed
using a quick-sort algorithm. Most importantly, the sorting algorithm is run only
over a small percentage ¢ of the elements in the pool, namely those whose time
stamp falls within the next processing interval (see Figure 4). This is realized by
setting the first pivot point of the quick sort procedure to t + Tyindow- After the first
iteration of the sorting algorithm the pool is shuffled and only the elements with a
time stamp less than ¢ + Tyindow are sorted

The algorithm efficiency depends on the choice of the Tyindow value. On one
hand, a small value, no larger than the minimum synaptic transmission delay is
necessary to ensure the chronological processing of the events. On the other hand,
a large time window prevents the sorting algorithm from failing to find any events
in the pool within the corresponding interval, and it is also desirable because it
decreases the number of sortings required.

The quick-sort pool algorithm was developed by the authors as a solution for
the management of high neural activity frequencies and it was tested in a number of
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Fig. 4. The event-driven simulation engine based on the quick-sorting strategy of an unordered
pool. Whenever the spike list becomes empty the quick sort algorithm is run upon a fraction of
the elements in the spikes pool, namely those with a time stamp between the current time ¢ and
t 4+ Twindow- Sorted spikes are stored in the list and are processed by the simulation engine. Any
new events are simply added at the end of the pool.

simulations described in 28, 9. In Figure 3 are shown the performances of the quick-
sort algorithm for the self-organization task. Graphic 4 corresponds to a combination
of the multiple spike concept with the quick-sort pool. For Twindow = 2 ms and a
time resolution of dt = 0.1 ms, the algorithm outperforms the rest of strategies and
scales very well with the increase in the network activity.

To illustrate the differences between the basic event-driven implementation
(graph 1) and the improved quick-sort pool algorithm (graph 4) we estimate the
number of operations required in the implementation of the performance critical
parts (i.e., loops). For algorithm 1 we have:

NOy = Np - (a+ 1) + N, - log(N,) (7)

with N, = L -N-S-a. N is the number of neurons, S the number of average
synapses per neuron, a the network activity, T the time interval simulated, ot the
time resolution in the generation of events. The overall critical computational effort
in Eq. 7 results from: integration of neural activity for the units that receive spikes
(i.e., the first term of summation); operations for new spikes distribution (i.e., the
second term); the ordered insertion of spikes in the event list (i.e., last term). For
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algorithm 4 we have:
T qN,
Twindow m

~ N Noe( LN
NOym 22 (a+1)+ log(L>2) (®)

with m € [1, S] the fraction of spikes aggregated, and ¢ € [0.05,0.25] the fraction of
the pool which is sorted at every Tyindow interval. The speed gain by implementing
the latter algorithm can be up to 20 times, as long as the computational effort for
the pool sorting remains low and independent of the pool size.

4.2.3. Comparative performance study

We compared the layered delay-queues algorithm®® with the quick-sort pool algo-
rithm with respect to the computational effort, in CPU time, spent for the integra-
tion of a given number of units. The comparison was facilitated by the fact that
both algorithms have been used for the simulation of spike-driven learning processes
of similar complexities. In 30 the layered delay-queues algorithm was applied to a
learning task with integrate-and-fire neurons, while the spiking frequencies were
maintained constant: F, = 2 Hz for excitatory neurons and F; = 4 Hz for inhibitory
neurons.

The quick-sorting strategy was implemented for the self-organisation of a feature
map of spiking neurons, with plastic excitatory and inhibitory lateral synapses (for a
detailed description see ref. 28). The quick-sorting algorithm was tested for networks
with the same size and connectivity rate (i.e., 10%) as reported in 30, with the main
difference that frequency of neural activity in our simulations was of 100Hz. All our
simulations were run on a 400 MHz PC running Linux.

Results reported for the layered delay-queues architecture are time per neu-
ron needed to complete the simulation of one second of neural time in networks
with different sizes. In order to compare the algorithms, we computed the CPU
time required for the simulation of all operations entailed by the firing of the same
number of neurons. We choose this measure mainly because the algorithms work
at significantly different frequencies, which makes other computational measures
inappropriate for comparison. Results are shown in Figure 5.

When examining the performances of these algorithms one should consider the
significant difference in the frequencies of neural activity at which they work. The
merit of quick-sorting algorithm is that it manages to keep the simulation time
approximately twice as long as the layered-delays algorithm in the presence of a 30
times higher frequency of activity. Most importantly, it does this while preserving
the noise effects in synaptic transmission.

4.2.4. Calendar queues

Another algorithm which deserves special attention is the priority queue proposed in
8 for the management of communication in a message-based event driven approach.
The neural model on this approach is made up of several blocks (i.e., synapses,
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Fig. 5. Execution times per neuron vs. size of the network, computed for the simulation of the
same number of firing units by two algorithms. Note that the average firing rate in the layered
delay-queues simulation is 2.5 Hz, whereas the times reported for the quick sorting algorithm were
measured for a neural activity of 100 Hz.

threshold, burst) and the communication between neurons and blocks within a
single neuron is achieved by message passing. In order to reduce the time required for
message insertion in the priority queue, the authors use a calendar queues technique,
based on a look-up table (LUT). During simulation, messages are aggregated as
multiples of a basic time step of 100us. All events with the same time stamp are
then added to the same list. Using a LUT with 10® entries and a time step of 100us
means that events can be scheduled no further into the future than 100s. For such
a queue, insertion of events is O(1).

The algorithm is also accompanied by a dynamic memory allocator for the new
events created, which reduces by about 10% the average memory allocated per
object. The memory required only for the storage of the look-up table containing
pointers to the first message in each list is approximately of 4MB. For a network of
5000 units with 200 synapses per neuron about 50MB are required. The simulation
time scales linearly with the increase in the network activity and 200 million events
are handled in about 700 seconds.

4.2.5. Circular priority-queue

The circular priority-queue algorithm represents a combination of the multiple spike
concept with the calendar queue techniques described in refs. 7 and 8. The circu-
lar priority-queue consists of a two dimensional matrix. Spikes are stored at the
intersection of a row representing the time step of the simulation with the col-
umn corresponding to the number of the target neuron in the network. The circular
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priority-queue incorporates the idea of multiple spike by grouping all spikes pending
delivery to a neuron on a particular time step and delivering them as one event. In
the example depicted in Figure 6, there are 50 events to be delivered to the neuron
with number 2 at time step 2. When a dequeue operation is performed spikes are
removed from the queue cell and passed for integration to the target unit.

The queue is circular, by wrapping around every T' time steps. A pointer to the
head of the queue sets the current time step being processed and moving the head
pointer from one row to the next advances time. When adding spikes to the queue
special care must be taken when the queue wraps around, in order to ensure that
the tail of the queue is always behind the head.

Once a new spike is emitted, the indirection matriz is used to determine the
storage location of the event in the spike queue. A row in the indirection matrix
holds a permutation of the numbers of neurons in the simulation. The row in the
spike queue where a new event is stored is given by its time stamp. The number of
the column is given by the value stored in the indirection matrix at the intersection
between the row given by the time stamp (i.e., 4) and the number of the target
neuron (i.e., 5) (see Figure 6). Once all spikes for a given time step have been
processed the corresponding row in the indirection matrix is shuffled.

Circular Priority Queue

Time Time B
Step Target Step Target
‘ $0123456789$Neur0n $0123456789%Neumn‘
0 Number 012/4[0]|7]|9(3|5[1|8]6 Number
Head 1 18[5]1]2]4]6][3[7]9]0 Spike
2 50/34|13)23/89|97|12|63 2]9(8|4]6|2|1|7|5|3|0 ‘
= 45[47]92/56/49]54[13]52|65/87 3[8[6[2]0[1]9]5]4[7]3] [ [N=5
4 Bfl87[85/a9]20[83[71/66/58/61 41511142 7[X6(8]9[3
‘ 5 |68]36/55(45[18/17/63(33 5/1]3[2]7]4]6]0]5]9]8
5 sl5]2[3]7]6]4]8[9]1]0 ‘
7 713]7]8]2]5]4]1]0]6]9
‘ 8 g|5/8/4[3|0|6]1]9]2]7
9 9l8]7]9]0[5][1]4]2[3]6 ‘
Spike Queue Indirection Matrix
L - - - |
Dequeue
©
Integrate Generate New
o Neuron Spikes Engueue Spike
Q

Neurons

Fig. 6. A circular priority queue incorporating the multiple spikes paradigm. The diagram depicts
the queue for a network of 10 neurons. The length of the queue is 10, indicating the number of time
steps T that the queue can store before it must wrap around. A value in the spike queue indicates
the number of spikes pending delivery to a neuron. A new spike is stored in the spike queue in the
column indicated by the indirection matrix and in the row corresponding to its delivery time.

The advantage of this approach is that, regardless of the number of events stored,
insertion time is always O(1). The same is not true for spike removal from the queue,
which depends on the number of spikes stored. The higher the queue occupancy rate,
the faster spike removal will be. For occupancy rates greater than 103 events the
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complexity of spike removal is O(1). The major disadvantage of such an approach
is the significant memory load introduced by the storage of the circular queue data
structures. The memory load increases linearly with the number of neurons in the
network and with the length of the queue (i.e., time steps before it wraps around).

4.2.6. Comparative performance study

We compared the performances of calendar queue algorithm® with the quick sort-
algorithm and the circular priority-queue implementation. In 8, the event processed
in the simulation is a message defined as a data packet containing the type of
the message on, off and the time of delivery. The results reported are simulation
times versus total number of messages processed. In the quick-sort and the circular
priority-queue, processing of one spike-event would employ (with approximation)
processing of the following messages: a synapse receiving the on message delivers an
on message to the threshold block, which integrates the unit activity and if the unit
spikes, sends an on message to the burst generator block, which in turn broadcasts
an on message to all output synapses. We assumed a correspondence of 2 messages
per one spike-event and we measured for the quick-sort and circular priority-queue
algorithms the CPU times required for the simulation of same number of events as
reported in 8.

50 ‘ | |
—B- Calendar queues
-0 - Quicksort pool . o
40H A Circular priority queue e
0 P
c , )
8 ’
w 30 7 7’ 0 4
&L .
£ po
i= 20t . . |
2 o
O .
10+ , i
o . —m & A
0 : L

0 0.5 1 15 2 2.5 3
Total number of events (millions)

Fig. 7. Simulation time versus total number of events/messages processed, for three different
algorithms.

Results indicate that the algorithms based on the calendar queues approach
outperform the quick-sort method. The O(1) complexity obtained through the use of
a look-up table turn these algorithms on a benchmark for evaluation of event-driven
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strategies. The quick-sort method performs well for high neural activity patterns
within medium scale networks, while with the increase of the total number of events
generated, the additional effort for the sorting of the pool increases and slows down
the simulation. The circular priority queue and the calendar queues algorithms
perform similarly, with the latter being slightly slower.

5. Conclusions

This article addressed efficient simulation of networks of simplified neural mod-
els, such as spike response neurons. Simulation of large numbers of formal neural
models is faced with specific problems, mainly due to inter-neuron communication,
which requires adequate solutions. We described several strategies by which the
implementation can be optimised with respect to three issues.

Concerning howthe algorithm should integrate neural activity, it is important to
exploit the deterministic evolution in formal models of the neural state between two
consecutive spikes. Theoretically, when a unit’s activity should be integrated allows
two possibilities: at every time step, in a synchronous manner, or asynchronously,
triggered by the reception of an incoming spike. Practically, it was shown that for
spiking neural networks the event-driven approach brings, even in its most simple
implementation, a significant improvement in the simulation performances. Asyn-
chronous simulations that discretise the computation of neural state at spike-event
occurrence, tends to become the de-facto standard for the simulation of large net-
works of formal neurons and becomes appealing for computationally expensive de-
tailed neural modelling. Accordingly, it is crucial to find the most efficient strategies
for dealing with very large numbers of events, generated either by large-scale net-
works, high activity patterns or massive external stimulation.

The most expensive operations of the event-driven strategy concern the manage-
ment of the data structures that deliver spikes in chronological order. The problem
arises when these data structures increase tremendously and the insertion/ removal
time grows accordingly. One can try to prevent the excessive increase in the number
of events to be processed, by using techniques such as the multiple spike. If this is
not possible, than different strategies may be employed in order to reduce the com-
plexity of large dynamical data structures management. We discussed several such
techniques and we provided a coarse comparative evaluation of their performances.
One may argue that the comparison of algorithms presented is neither very easy
to achieve, nor very accurate, due to many differences in network architectures,
learning procedures or results reported in each simulation. One has to consider that
this paper is aimed at presenting a general review of the concepts and strategies
existing in the literature for the efficient simulation of spiking neural networks. It is
beyond the scope and the possibilities of our attempt to make a classification of the
state-of-the-art algorithms. Evaluations offer a rough measure of the algorithms’
performances, meant to outline each algorithm’s advantages and shortcomings. The
implementation of the appropriate combination of strategies is the choice of each
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modeler and it is strongly dependent on the details of studied models.
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