
Chapter 7

Discussion and future directions

The final chapter of this thesis includes a discussion of the simulation results obtained and

of the theoretical and practical significance of our work. In Section 1 the neurophysiological

implications of the models on motor cortex self-organization and visuomotor mapping are

discussed. In Section 2 we discuss the psychological relevance of the visuomotor model to

the imitation issue and we present future extensions and possible applications of our work.

7.1 Neurophysiological implications

7.1.1 Emergent vs. innate directional selectivity of motor cortical neurons

Despite the vast body of knowledge currently relating to the motor control of the arm, there

are conflicting explanations of how the neocortex participates in motor control (see the de-

bate on muscles vs. movements encoded in primary motor cortex in Section 2.1.2). One

impediment to a complete explanation of the function of the M1 is that the fundamental

organizational principles of the cortical motor areas are yet not clear (Sanes and Donoghue,

1992). For instance, there is a large body of evidence indicating that directional tuning is

an essential feature of motor cortical neurons (Section 2.1.3). However, it is not yet known

whether this neural characteristic is acquired by experience or genetically encoded.

Our modeling work on the self–organization of motor cortex represents a first attempt to

provide a learning scenario for how motor cortical neurons develop directional selectivity.
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Put generally, it demonstrates that a self–organizing map can learn to distinctively represent

and command 12 directions of movement, by extracting the similarity relationships from the

input space. The success of the self–organization process is dependent on two factors: the

input patterns and the feedback connectivity system.

A self–organizing feature map is a means of visualizing in a reduced dimensional space

(usually two) the spatial relations existing in a multidimensional space. Hence, if we aim to

approach the formation of the motor directional maps from the self–organization perspec-

tive, the crucial aspect consists of the characterization of the input signals that are available

to the training process. From this view, the population coding operating in the motor cortex

and the functional connectivity that has formed, are the result of a self–organization process

and reflect up to a point, the peculiarities of the input space. However, as it was pointed

out elsewhere in this thesis, in the case of the motor cortex as opposed to the visual cortex,

it is less clear what precisely might be the input (i.e., training) data to the self–organization

process. Our hypothesis is that the formation of the directional motor map is driven by

proprioceptive feedback from those muscles involved in movement. This idea will be the

starting point of our future work on modeling motor cortex organization (see details in Sec-

tion 7.2.2).

In our model, a directional feature map emerges through unsupervised learning from a

random initialization of the afferent and lateral connection weights. There is one built–in

constraint in the shape of the network connectivity: the short–range distribution of excita-

tion and the long–range inhibition. The connectivity with a Mexican–Hat profile is a general

feature of a self–organizing feature map. That is, because short–range excitation is needed

to focus the activity in the immediate neighborhood of the winning neuron, while the long-

range inhibition helps to suppress the network response in the contralateral direction of the

movement.

There is experimental evidence for the existence in the motor cortex of adult animals of ex-

citatory connections which link nearby neurons with similar neural responses and of distal

inhibitory connections between neurons with different tuning curves (Georgopoulos et al.,

1993; Hatsopoulos et al., 1998). However, it is not clear if this is a result of a developmental

process taking place in the motor areas or represents a built-in feature. We believe that these

kinds of questions can be easily explored through modeling work, with promising and valid

results. Part of our future work is aimed at exploring the influence on the map organization

of the variation of connectivity pattern parameters (i.e., the rate of the connectivity and the
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spatial distribution of the lateral feedback).

Can be the motor cortex modeled like the visual cortex?

Another observation with respect to the theoretical assumptions of our model, concerns

the fact that it was mainly inspired by models of the visual cortex (see also discussion in

Section 7.1.2 below). The power of the visual model was twofold. Firstly, at its heart, the

modeling of visual cortex organization challenges the idea of innate cortical features (Hubel

and Wiesel, 1962; Gilbert and Wiesel, 1992). We believe that if it is possible that the visual

directional maps are shaped by experience, then it may also be feasible to model the devel-

opmental processes of motor cortex. This hypothesis is supported by experimental studies

that indicate that there is a self–organization capacity in the cortex of adult animals, which

is perhaps part of the original developmental organizing processes (Merzenich et al., 1983;

Hess and Donoghue, 1994; Rioult-Pedotti et al., 1998).

Secondly, the modeling studies of the visual cortex put forward in the last decade a core

of hypothesis on the computational and design principles of the brain. First, the self–

organizing feature map (SOM, Kohonen, 1994) has been very successful in modeling the

development of sensorial maps. It has become almost a de facto standard in the biologi-

cal modeling of brain self-organizing processes. Secondly, computational studies pointed

out the essential role played by the horizontal connectivity in the formation of orientation,

binocular, or directional maps (Section 2.2.4). Placed in this context, our simulation work

has the advantage of a bi-directional knowledge transfer. On one hand, our study has been

largely inspired by existing models and data from the sensory cortices. On the other hand, if

our model proves successful in simulating the formation of motor directional maps, then it

provides computational evidence of the learning mechanisms and the functional principles

of the motor cortex.

Our findings (Section 6.1) indicate that the self-organizing feature map represents an ap-

propriate modeling framework for the developmental processes taking place in the motor

cortex. Furthermore, we found that the lateral feedback system plays an essential role in

the organization process, in a similar way to the role it plays in visual cortex development.

Plasticity of both excitatory and inhibitory connections is essential for self–organization to

occur, by finely adjusting cells tuning level to the input space features. Exploring the effects

of learning in terms of single spike timing represents our original contribution in the area of
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self–organization with spiking neurons. Our model indicates that directional information

may also be read out from the timing of the first spike of fast responding neurons. Surpris-

ingly, this observation comes out as a possible common feature of information processing in

the visual and motor brain.

Until very recently, the common belief in computational neuroscience was that information

in the brain was carried mainly by the neuron’s discharge rate (see Section 6.1.5). Recent

experiments on visual categorization revealed the existence of a very fast processing of in-

formation in the visual cortex, possibly based on the order or timing of a single spike per

neuron (Thorpe et al., 1996; Thorpe and Gautrais, 1998). In the case of the motor system, the

influential work of Georgopoulos and his co–workers (1984, 1986) proposed the population

coding scheme as the main paradigm used to interpret and predict movement based on the

motor cells’ discharge rates. Based on our modeling results, we suggest that a fast response

of the motor cortical areas, read out from the timing of the first spike of optimally tuned

neurons is certainly advantageous and quite likely implemented by the motor system. The

only restriction is that such an answer has a very limited precision and only further process-

ing of the directional information by a large population of cells can give rise to an accurate

reach movement.

It is beyond the scope of this thesis to offer an answer to the question of whether directional

selectivity is a genetically encoded feature of the motor cortex or is acquired by experi-

ence. The model proposed here provides only a number of computational ideas on what it

takes to develop neural selectivity and population coding in a biologically plausible system,

by unsupervised means. We believe that by developing optimal responses in its elements,

rather than having them pre–wired, a system can show a flexible and plastic architecture

that adapts to the resources available and to the particularities of the input space.

7.1.2 More evidence for the importance of horizontal connections

It was pointed out that in our model, an essential role in the organization of the motor map

was played by plastic lateral connections (see Section 6.1.5). Our findings show the for-

mation of functional connectivity in the motor area with a similar profile to the patterns

of connections described in other brain areas. Thus, experimental data from primary vi-

sual cortex shows that horizontal projections link columns with common ocular dominance

and orientation selectivity’s (Gilbert and Wiesel, 1992). In the auditory cortex dorsoventral
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connections link regions with matched characteristic frequencies (Read et al., 2001). Recent

modeling of eye–saccades planning in the lateral intraparietal area (Xing and Andersen,

2000) have shown that in order to hold memory activity for a saccades, the neural popula-

tion develops excitatory connections between units with similar preferred saccade directions

and inhibitory connections between units with dissimilar directions.

Previous modeling results similar with ours have been obtained by Lukashin and Geor-

gopoulos (1994). They found that during a supervised learning process, the strength of

connection between directionally tuned motor neurons becomes negatively correlated with

the difference between their preferred attributes. This sort of experimental data and com-

putational work, suggest the manifestation in the brain of a general principle for horizontal

connections organization. It is generally believed that this is reflected in the correlation be-

tween the strength of interaction and similarity among units’ preferences.

With respect to the computational function of the lateral feedback system, our model of mo-

tor cortex organization and visuomotor mapping, indicate a crucial role of the horizontal

connections in shaping the activity of the network and in favoring the formation of stable

attractors of motion directions (see Section 6.1.5 and 6.2.4). On the short scale, the lateral

excitation increases the collaboration within a cell assembly, while the lateral inhibition sup-

presses the answer in the opposite direction. On the large scale, the plastic connections

implemented in the visuomotor system, mediate the transfer of information and synchro-

nization over a large distance (i.e., 50 ms delay). Our findings suggest that correlated activity

in motor and visual networks is a result of both organization of long–range connections and

collaboration mediated by the local lateral pattern.

Similar observations have been made by Usher et al. (1996), who studied the role of long–

range connections for visual binding and line completion. They used a network of leaky

integrate–and–fire neurons with long–range connections implemented only between cells

with similar orientation preference. Their findings revealed a clear tendency for synchro-

nization between cells with same orientation preference separated by large distances. In

their model, if two distal cells placed in the range of clustered connections receive the same

stimulus (even if they are not optimally tuned themselves), they indirectly synchronize via

the intermediate synchronization with their optimally tuned neighboring cells.

Compared to Usher and co–workers work, our simulation has the advantage of develop-

ing the profile of the long–range connections. In our case, the network coupling consists

of a full connectivity from the visual to the motor network, initialized with weight values
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nearby 0. By doing this, we do not arbitrarily restrict which is the visual directional informa-

tion perceived by the populations of motor neurons that encode all movements directions

(i.e., in our case, whole motor network). The coupling of neurons according to their prefer-

ences, should be an emergent feature, rather than a built–in property that limits the network

plasticity.

In our model, as a result of learning, clustering of connections occurs in a similar way to

the pattern implemented by Usher and colleagues. The strength of long–range connections

cluster in spatial neighborhoods that correspond to the directional cell assembles in the mo-

tor area. Accordingly, correlated activity between visual and motor neurons is induced not

only via the long-range synapses, but also through the mediation of the visually-related mo-

tor neurons optimally tuned to the direction of movement (see discussion in Section 7.1.3

below). Future work will take into account a more realistic scenario in which the cortico-

cortical projections start with some initial non-zero (i.e., biased) values and weakening of

synapses, besides strengthening, will be allowed.

7.1.3 Dynamics of single neuron activity in the motor cortex

Up to this point, the discussion has focused upon describing the main requirements for

self–organization of the motor map and the alignment of visual and motor neural represen-

tations. However, an important co–lateral effect of modeling these developmental processes

was to observe the emergence in the motor network of different patterns of neural behavior.

These may reflect various functions in the preparation and execution of movement, which

are discussed below.

During initialization, the neural spiking model is set up in such a way that all motor cells

begin the simulation equally selective to all motion directions. However, learning in a self–

organization map (SOM) is a competitive process and takes place by amplifying any small

differences in the neural response. If one neuron wins for a certain direction, its synaptic

strengths are modified to increase its chances of winning again for that pattern. In this

tuning process, the variability of the neural response is an essential factor and is given by

the level of noise (i.e., in the threshold value, the firing time, the spike transmission delay)

and the pattern of connectivity. Due to the fact that input signals can arrive in a synchronous

or asynchronous way, this neural variability causes the possible operation of neurons in two

modes. Thus, a neuron is capable of switching between computational modes, from the
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integration of firing rate input received from a large number of neurons, to the detection

of coincident spike arrivals (see also experimental evidence for neurons acting in different

computational modes in Destexhe and Pare, 1999). Hence, we can describe the existence of

two main classes of neurons.

The first class, that of coincidence detectors, is mainly formed by the winner neurons, which

represent about 40% of the neurons in the motor area (i.e., 110/264) (see Section 6.1.5). These

neurons respond very rapidly to the input signals that are emitted synchronously and af-

fected by similar values of noisy delays. Hence, their afferent weights become highly tuned

to one input pattern. Note an important difference between learning with a SOM of contin-

uous, rate-coding neurons and a SOM consisting of spiking neurons. While in the former an

input pattern is mapped onto a single neuron that has the maximum activation, in the later,

any pattern similar to the best–matching pattern will determine the firing of the winner

neuron. Hence, if there is no increase of the neural threshold, what we have obtained in our

spiking SOM, were neurons highly responsive to several (i.e., maximum three) directions of

movement.

It is noteworthy that the preferred directions of each neuron, when represented on a circle,

occupy an arc of maximum 60◦. Similar results have been described experimentally by

Battaglia-Mayer and colleagues (2000) on a study of early coding of reaching in parieto-

occipital cortex. The authors have found that reach-related cells in this area have about three

preferred directions of movement. Consequently, they characterized the neural response

through a ’field of global tuning’, defined as the sector of the directional continuum within

which all its preferred directions lie (e.g., approx. a quarter of a circle).

A second class of behavior is represented by the integrators, which are neurons that are

commonly needed to integrate a large number of inputs in order to fire. If a neuron did

not spike at the coincident arrival of the input signals, then due to the exponential decay

of postsynaptic potentials, the accumulation of several excitatory potentials will be required

before the postsynaptic spike will occur. Hence, these neurons’ activity strongly depends on

the strength and the number of their lateral excitatory connections. In the motor condition,

about 20% (i.e., 50/264) of all neurons show a significant directional tuning while operating

in the integration domain (see Section 6.1.5). These cells, referred to as lateral neurons, need

to integrate both motor input and local lateral excitation in order to become active.

Another subclass of integrators is the neurons, which need to sum excitation from three

sources: afferent, local, and long–range connections. Directionally tuned activity occurs
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in these motor neurons only during the visual condition. Accordingly, they were named

visually–related neurons and they constitute about 10% of all motor units (i.e., 25/264). A

remark here is important with respect to the degree of directional tuning of these neurons.

It was shown in Sections 6.1.5 and and 6.1.5 that most of the winners are broadly tuned to

several directions of movement, while lateral neurons responses are less broader. In the light

of the above discussion, we can say that the selectiveness or tuning of the neural response

increases with the number of inputs integrated. Thus, the lateral neurons are significantly

more directionally tuned than the winner neurons, and the visually–related neurons are

optimally tuned (i.e., most selective) compared to both previous categories.

Even if our simulations represent a drastic simplification of the mechanisms involved in

neural control of reaching, several hypotheses are presented here, with respect to the func-

tional roles of neurons. Studies of visuomotor processing in the parieto–frontal network

involved in reaching demonstrated the existence of various types of neural activity. During

an instructed delay task followed by a pursuit tracking task, Johnson and colleagues (1999)

have analyzed the directional discharge of neurons in monkey’s premotor and primary mo-

tor cortex. From 240 neurons, in 132 cases, significant directional tuning was found for both

the cue and track periods. In 26 neurons, directional tuning was found only during the cue

period, and in another 54 the directional tuning was significant only in the track period.

These neural behaviors can be classified as: (1) visuomotor neurons, whose activity show the

co–existence of visual and movement control signals; (2) signal neurons, defined as motor

neurons with visual properties, which respond transiently to the onset of the visual cue; (3)

movement-related neurons that fire only for movement control.

We have obtained similar dynamics for cell activities in the motor network as a consequence

of learning the visuomotor mapping task. From 264 motor neurons, about 60% developed

visual properties, from both the winner and lateral neurons. In the absence in our model,

of a behavioral task comparable to the instructed-delayed task, the visuomotor neurons are

represented by those neurons which show directional activity during movement execution

and under visual stimulation. The signal neurons correspond to our visually–related mo-

tor units (10%), which fire only during the visual stimulation period and are almost silent

during movement execution. Finally, we have also found about 8% of motor neurons that

are involved in the control of directional movement, but remain silent when stimulated by

visual signals. These correspond to the movement-related neurons described experimentally.

Our results suggest that the formation of the motor network’s response under visual guid-
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ance take place in a few steps. First, the visuomotor neurons are activated via the long-range

inter-cortical connections by the visual directional signals. Note that in our model, the

strength of these connections reaches a peak for a difference between the distal visual and

motor neuron preferred directions of 30◦. Therefore, the motor network response evoked

in this way is broadly tuned to the desired direction of movement. Instead, the signal (i.e.,

visually–related) neurons that occur in the motor network are optimally tuned to the visual

direction of movement. Hence, they can play an essential role in finely adjusting the motor

population response (see Section 6.2.4). The next stages in the formation of the network re-

sponse involve a successive propagation of activation, started by the visuomotor and signal

neurons and mediated by the motor lateral neurons. The joint activity of all these neurons

leads to the formation of the desired direction attractor.

Up to this point, we focused upon discussing the immediate implications of our model-

ing results. In the remainder of this section and along the next section we will outline the

theoretical relevance of our models and their possible application to real systems.

7.1.4 Theoretical significance of the visuomotor mapping model

In the theoretical background of this thesis we reviewed a number of recent neurobiological

theories of visuomotor control of movement (Sections 3.1.2, 3.2). At that point, we intro-

duced four main hypotheses:

• The sensorimotor cycle has a unitary nature;

• The visuomotor transformation is achieved gradually, supported by the combinatorial

properties of the neurons;

• The existence of common motor programs for eye and hand movements can reflect the

operation of cortical computational principle of ’program re–use’

• The alignment of motor and visual networks for the correct transfer of information can

be learned through a simple Hebbian learning principle.

While the last principle has been directly addressed in our simulations, the implications of

our work for the other points might not be immediately clear. Therefore, we propose below

an integrative view, which presents the theoretical relevance of our computational results.
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The progressive match framework

Despite the simplification of the visuomotor transformation process in our model, we be-

lieve it illustrates a number of basic computational principles of this process. In particular

we consider that our modeling work is relevant to the theoretical framework proposed by

Burnod and colleagues (1999), even more so because, at the time we implemented our sim-

ulations (2000) we were not aware of their work.

The basic computational demand for reaching is met by the alignment of the visual and mo-

tor neural representations. This was achieved in our model by implementing a Hebbian–like

learning mechanism, that correlates activity in spiking neurons with some feature selectiv-

ity, that is, in our case, directionality. Burnod’s et al. (1999) model is based on the operation

of an equivalent mechanism. The visuomotor transformation is described in terms of a pro-

gressive match of different sets of sensory information by neurons with tuning properties.

Matching takes place gradually, in several combinatorial domains. In each domain, an iden-

tical computational mechanism operates, through the co-activation of matching neurons

tuned to the same preferred attribute (position or direction).

The contribution of our model resides mainly in the fact that it is based on computations

with spiking neurons and implements a realistic population coding of motor directional-

ity. The operation of the computational mechanism implemented is not restricted to any

particular area. It can align neural representation coding for any type of stimulus features

(orientation, direction, pitch, etc.). Moreover, it implements learning on two of the four

combinatorial domains described by the authors (Section 3.2.3). If we consider the training

input to the self–organizing motor cortex as proprioceptive afferent feedback coming from

activated muscles, than we have in the motor network organization, the learning of the first

domain, which relates muscle dynamics and arm command. By relating the gaze direction

and hand movement direction in the visuomotor mapping process, the system learns hand-

tracking in the third combinatorial domain. Note that in our model, and the Burnod et al.

(1999) framework, motor control, i.e., referred to as a motor babbling stage in the progressive

match framework, is developed prior to visuomotor mapping learning.

The relevance of our model is even more significant, it we consider that in the Burnod and

coworkers proposal most concepts were inspired by neurophysiological data. Instead, our

model started out with a minimum set of architectural assumptions and a number of equiv-

alent concepts emerged in the network, through development. For instance, in the pro-
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gressive match model, a key element is the set of units, which integrate information on the

sensorimotor axis: sensory units, motor units, and matching units. It is clear that the type

and functionality of these units has been implemented according to the experimental data

(Johnson et al., 1996; Caminiti et al., 1998; see data described in Section 7.1.3). Conversely,

in our model these types of behavior have simply emerged during the self–organization

process.

Moreover, in the absence of a working model, Burnod and colleagues focus upon the role

of the matching units within the learning process of sensorimotor correlations. Instead,

we have seen that correlated activity in two networks is a result of synchronization via

long–range connections but also through intermediate synchronization with neurons in the

same cell assembly. That is, learning takes place in a more distributed manner and involves

matching (i.e., visuomotor) units as well as signal (i.e., sensory) units and movement-related

units. We believe that an important further step into the realm of biologically inspired mod-

eling of arm–reaching will be represented by the complete implementation of the progres-

sive match architecture. Our efforts will be aimed at implementing more conceptual ele-

ments of this framework. A particular goal will be to obtain the formation of condition or

set units, which are involved in maintaining the neural representation during delayed tasks

(Johnson et al., 1999; Burnod et al., 1999).

Cortical Software Re–Use

Another theoretical framework within which we can discuss our results is the cortical soft-

ware re-use theory (CSRU, Reilly, 1997; Reilly, 2001). Put simply, CSRU states that a general

principle of creative cognition is the appropriation of computational programs from one do-

main and their application to another. For instance, CSRU proposes that perceptual binding

can be seen as a collaborative process between cell assemblies that are equally well devel-

oped (Reilly, 2001). The style of computation is best viewed as a process of dynamical en-

trainment, involving the synchronization of firing patterns in reciprocally connected cortical

areas. We believe that the neural mechanism for ’binding’ visual input to the relevant motor

output for visuomotor mapping implements a similar type of computation. In CSRU terms,

the visual neural activity is re–used to control the movement of the limb.

A stronger claim (i.e., hypothesis) is that the limb movement may make use of the eye mo-

tor activity, in a so called motor–to–motor program re–use (see Section 3.1.2, Metta et al., 1999;
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Reilly and Marian, 2002). Note that this hypothesis states that visual (i.e., retinal) infor-

mation is not necessarily required for the guidance of movement. The alternative to this

process is that the motor program for eye movement is re-used to control limb movement in

the same direction. This re-use has the advantage that eye-movement related signals can be

read out at any processing stage, from various cortical and subcortical areas, and they are in

head-coordinates, compared with the retinal information in Cartesian coordinates.

Some computational support for this hypothesis already exists. Metta and co–workers

(1999) have implemented a model of visually guided reaching based on the alignment of

the head map with the arm network (see Section 3.3.1). Similar results have been obtained

by Marjanovic et al. (1996), who constructed a system that first learns to foveate a visual

target and then re-use the saccade map to achieve ballistic reaching. Such modeling work

provides a compelling example of how motor programs for eye movements or heading (see

also Kolesnik and Streich, 2002) can support the development of visually guided reaching.

From a developmental perspective, the program re–use makes much sense, as the ’software’

for heading, eye movements and gaze focus develop priori to the control of reaching. Con-

sequently, this hypothesis has a great potential in the robotics field.

The perception–action cycle

A final thought in this theoretical section, will be given to the unitary nature of the senso-

rimotor coupling. With respect to this rather abstract issue, much less can be inferred from

our simple model of visuomotor mapping. One might say that our assumptions are rather

a personal choice than scientifically proven facts. We have developed them while trying to

find ways to implement the sensorimotor transformations.

The personal belief of the author of this thesis is that sensorimotor mapping is a fundamen-

tal, built–in property of any living nervous system. This means, that as a general principle

of any nervous system, sensing–for–acting is implemented as one unitary computational

operation. Hence, to characterize the task of transforming the sensory information from

one modality to the motor output in another modality as the sensory–motor transformation

’problem’, is perhaps to view it from the wrong angle. Moreover, because it is a general

and ancient design principle of the nervous system, it is implemented at the lowest–level

of the system and it is preserved in more complex variants of the system (i.e., primates or

human brains). We consider that the apparent modularity of the human brain and the high
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degree of sophistication of its circuitry conceal the functioning of some low–level, built–in

mechanisms which implement fundamental computational operations.

With respect to the transformation concept, we believe that it owes much to Cartesian du-

alism (i.e., external vs. internal world). We are probably on the same line with the critique

made by a roboticist of the general tendency to assume that description and implementation

of a system must be equivalent:

We believe that classical and neo-classical AI make a fundamental error: both
approaches make the mistake of assuming that because a description of rea-
soning/behavior/learning is possible at some level, then that description must be
made explicit and internal to any system that carries out the reasoning/behavior/learning
(Brooks et al., 1998, page 961, our emphasis).

Insights from our modeling work, and other more sophisticated models by Salinas and Ab-

bott (1995), Burnod, Baraduc and colleagues (1999), showed us that a global complex oper-

ation, such as information transfer for the visual guidance of movement, may rely on the

simple mechanism of correlated activity of single cells. The core of our model is based en-

tirely on the ubiquitous feature of neurons to be directionally selective. A more general

solution to the problem of sensorimotor transformation based on similar basic computa-

tional mechanisms was given by Salinas and Abbott (1995). Furthermore, it was discussed

that combinatorial properties of directionally and positional selective neurons are the key

element in the progressive match architecture for visually guided reaching (Burnod et al.,

1999).

First, at the level of a single cell, several sources of information can be integrated along the

sensorimotor axis (see Section 3.2.3). Second, the correlated activity of cells with the same

preferred attributes (direction and position) can allow the correct transfer of information.

Third, the coordinate transformation can be understood in terms of neural gain field, where

the response of a neuron is a product of the receptive field and the linear gain field (see Sec-

tion 3.2.2). The point we want to make here, is that neural information processing systems

rely heavily, on the computational features of single units.

In the computational neuroscience field the ideas outlined above, are well known. However,

in the field of artificial intelligence and robotic applications, almost no attention is given to

the properties of the neural model. For instance, a very succinct comparison between types

of neural models existing reveals the following. A continuous rate-coding neuron, that rep-

resents the computational unit of the classical neural networks, can compute a temporal
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linear summation of inputs. A simplified model of the spiking neuron can in addition de-

tect coincidence, can do multiplexing, and can compute in a temporal domain using delay

codes (Maass, 1999). A compartmental model, which includes the dendritic tree, can per-

form spatial summation, nonlinear operations (division), can increase its discrimination and

memory power up to thousand times that of the linear neuron, and can detect movement

direction and binaural stimuli (Koch, 1999; Poirazi and Mel, 2000).

The above comparison represents a twofold argument. First, artificial systems may benefit

enormously from paying more attention to the neurobiology of the living systems and to

the way these implement perception and control of action. Second, the single neuron is

indeed a very powerful computational device. Hence, we believe that by connecting these

neurons in small size circuits, primitive operations such as the perception–action cycle can

be implemented as an intrinsic feature of the system.

7.2 Applications and future directions

The central goal of this thesis was to offer a computational model that helps to bridge the gap

between cognitive description and neural implementation of mental phenomena. That is,

to understand the link between what a single computational element does and what many

of them do when they function cooperatively. It was also pointed out, that understanding

the way the brain organizes the control of movement can be largely beneficial to the de-

sign of artificial control systems. In general, the research dedicated to the understanding of

computations in real nervous systems shares the same motivation: to apply what is learned

from nature into the design of adaptive, intelligent, and eventually self-developing artificial

systems. We will try to discuss, in this section, possible integration and future extensions of

our models to systems of motor control. Up to the present these ideas are only at the stage

of proposals. It remains future work to show to what degree their implementation can be

beneficial.

7.2.1 Transforming plans in actions

A possible integration of the motor cortex organization model is within control systems

based on a direction-mapping strategy. In this case the system implements a transforma-

tion from spatial trajectory to end-effector directions or rotations as opposed to end-effector
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positions (Bullock et al., 1993; Fiala, 1995; Ritter et al., 1989). The idea of mapping spatial

into motor directions is supported by experimental evidence on the directional selectivity of

cells in premotor and primary motor cortex (Caminiti et al., 1991; Georgopoulos et al., 1986;

see Section 2.1.3). There is also psychophysical evidence for a direction-based rather than a

position-based transformation coming from studies on blind reaching. These experiments

suggest that the magnitude of the error is dependent on movement amplitude, rather than

on the end–point alone (Fiala, 1995).

One of the most efficient implementations of direction mapping for visually guided reach-

ing is the DIRECT model proposed by Bullock et al. (1993) (see Section 3.3.2). To control arm

movements, the system first performs an integration of position and visual directional infor-

mation into a position-direction map. In our model this corresponds to the motor network

which learns to align motor and visual directional information. Furthermore, the DIRECT

model focuses on learning the mapping from motor directions in body–centered coordinates

into joint-rotations in joint coordinates. The accuracy of a three joint arm movement in 2D

and 3D space strongly relies on the way the visual directional and positional information

are correlated in the motor map. The authors argue that only a sharp tuning of each cell

in the map, to a visual direction in a particular joint position, can ensure the accuracy of

reaching movements. Even if they acknowledge that this is a significant deviation from the

neurophysiological evidence (see population coding of directionality in motor cortex Sec-

tion 2.1.3) they justify it by the fact that in the case of broadly tuned cells, the model fails to

generate correct reaching movements.

The accuracy of visually guided movements is not an easy task for our model either, nor for

any model grounded on neurophysiological data (see also Baraduc et al., 1999). Our analysis

of the network organization leads us to believe that mapping accuracy is strongly influenced

by two factors: the parameters of the horizontal connectivity pattern and the quality of the

motor population codes for directions. By the parameters of lateral connections we mean the

rate of connectivity, the profile of excitation and inhibition, and the plasticity rules. By the

quality of the motor coding of direction we mean the stability and the distributed nature of

the neural representation of each direction. In other words, the accuracy of visually guided

reaching not only depends on how well the visuomotor coupling is learned, but also on

how precise the motor control of the movement is itself. That is why we consider that a

separation of the visuomotor development process into two stages may be beneficial. First,

a motor babbling or motor learning phase is required, to ensure the motor cortex organizes
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for the precise control of movements. Learning the visuomotor correlations follows this.

To conclude, we believe that the advantages of integrating a developmental model similar

to ours in a motor control system are many:

• It allows the emergence of population coding of directionality based on broadly tuned

cells. This gives biological plausibility to the model, besides bringing all the bene-

fits of a distributed representation (as opposed to a localist representation): flexibility,

plasticity, reduced size.

• By exploring the way learning evolves in the lateral connections, our model allows the

formation of stable attractors of movement directions, which in turn contributes to the

accuracy of reaching.

• Only by modeling the developmental process, can one observe the emergence of differ-

ent patterns of neural behaviors, with different functions in integrating and combining

information, matching, conditioning or delaying the response.

Motor primitives and the equilibrium point hypothesis

Another direction to follow in order to translate our motor plans into actions, is to control

the arm movement in conformity with the spring–like properties of muscles and reflex loops

(Bizzi et al., 1992). This idea involves putting together the concept of motor primitives and

the equilibrium point hypothesis, as an alternative to the inverse dynamics problem (i.e.,

the DIRECT model).

The motor primitives represent an appealing, rather theoretical concept, used by researchers

on both artificial and biological motor control to reduce the complexity of movement gen-

eration to elementary units of action. They are defined as a set of basis behaviors, which are

not further reducible to each other and which can be composed to produce the complete

behavioral repertoire for the system (Brooks, 1986; Mataric, 1997; van Essen et al., 1996). On

the other hand, the equilibrium point hypothesis is an experimentally–derived theory, ac-

cording to which movement arises from shifts in the equilibrium positions of the joints. An

equilibrium position is a consequence of the interaction of central neural commands, reflex

mechanisms, muscle properties and external loads.

A recent extension of the equilibrium point theory, developed by Bizzi et al. (1991) and
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Bizzi and Mussa-Ivaldi (1995) proposes that the muscles generate convergent force fields (i.e.,

equivalent to motor primitives), which direct the limb toward an equilibrium point in space.

The vectorial superposition of these independent force fields can generate a vast repertoire

of motor behaviors. The simulation studies of Mussa-Ivaldi (1999) have shown that by com-

bining a small number of convergent force fields it is possible to reproduce the kinematics

features of reaching arm movements.

The motor primitives proposed by Bizzi and colleagues suggest that spinal mechanisms can

serve as substrate for the operation of motor cortical activity, in order to produce a directed

movement of the limb. Georgopoulos (1996) proposed an integrative account of how direc-

tionally tuned motor cortical commands can be translated in the activation of muscles. In

his view, this mapping can be accomplished by connecting a population of central cortical

neurons through a set of motor inter–neurons, with a number of spinal populations associ-

ated with different motor primitives. Then, the preferred direction of a cortical cell emerges

as the vectorial, weighted sum of the force fields that act on the hand at a certain position in

space.

For our simplified version of motor control, this idea can be more beneficial and easier to

implement than dealing with the complexity of a multi–staged architecture, such as the one

implemented in the DIRECT system (i.e., with nine layers and learning at four different

stages). It also allows a bi-directional transfer of information in the system: an efferent

path, from the cortical motor network to the muscles and a re–afferent path, which brings

feedback on the muscles activation to the motor cortex. We believe that this can be the

appropriate framework for our future modeling work of motor directional map organization

based on training input coming from muscles (see Section 7.2.2 below).

7.2.2 Future model

Our future model of visuomotor learning will be developed with a specific goal. That is, it

will represent the neural controller of an avatar, endowed with simple vision, action upon

objects, and proprioceptive feedback on the effect of its movements. The first step in this

extension of the actual version of the model is to provide the motor network with propri-

oceptive feedback. In our view, the information available for the formation of the motor

directional map is represented by afferent signals from those muscles that are involved in

movement.
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Figure 7.1: General architecture of the future work model. It includes several modules. A
visual network of directionally tuned cells, with a retina-like input layer. A motor network
which self-organizes for the control of movement direction. Its output is send to a set of
force fields generators, which control the motor units in the muscles. Its input is provided
by a proprioceptive network that receives afferent signals from the motor units involved
in movement. These signals contain directional information, derived from the preferred
directions of the muscles.

Recent research on the contribution of muscles to joint torque indicated that mono- and

bi-articular muscles have different functional roles in the control of multi-joint movements

(Bolhuis et al., 1998). Experimental data demonstrated that the activation of bi-articular

muscles vary with the direction of force exerted, while mono-articular muscles show sig-

nificant direction-dependent activation. Furthermore, it was shown that the mono-articular

muscles have preferred movement directions, which cluster over subjects for both force di-

rection and arm posture. To us, this data suggests that the motor unit activity may provide

the directional information required for the organization of the cortical directional map.

Further, it is known that motor neurons in M1 make use of feedback information via affer-

ent sensory pathways. At the contraction of muscles, information on which muscle contracts

and how much tension it generates is fed–back to the motor cortex through the primary so-

matosensory cortex. Previous modeling work on this area was done by Chen and Reggia

(1996) who studied the relation between the formation of motor and somatosensory feature
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maps for arm-muscle control. They have shown that an alignment of the neural represen-

tations of muscle activation in the two areas occurs through correlated-activity means. We

intend to explore this alignment in the case of the motor and somatosensory networks en-

coding directional information, derived from muscle tensions and contractions. The propri-

oceptive network will be mainly used in order to transmit the motor units’ activations as

input to the motor cortical network, in the hope that a directional motor map will form. The

proposed architecture is outlined in Figure 7.2.2.

7.2.3 The imitation challenge

At the end of this chapter, we want to turn our attention back to the initial motivation of

this thesis, that is, the neonatal imitation phenomena. Here, we discuss this issue within

the more general context of imitative behaviors, which represent one of our future mod-

eling goals. This is because imitation plays a central role in human development and is

currently being explored as a powerful, alternative mechanism for teaching robots (Schaal,

1999; Dautenhahn, 2000; Billard and Mataric, 2001). Hence, we would like to abstract some

relevant ideas to the imitation modeling, from the work presented in this thesis.

The challenge posed by neonatal imitation is to understand the capacity of infants as young

as few hours, to imitate facial expressions, such as tongue protrusion and mouth opening

(Meltzoff and Moore, 1977). Meltzoff and Moore (1999) proposed that a key element in

explaining the mechanisms of this behavior is that the imitative act can be differentiated into

the body part and the movement performed. They consider that evidence suggests that neonates

select what body part to use before they have determined what to do with it. Further, finding

the correct action on the organ involves more effortful behavior preceded by a series of

searching movements.

Certainly, being capable of organ identification is probably the most astonishing hypothesis

regarding the newborns innate capabilities. Interestingly, this problem is less controversial

when it comes to implementation in artificial systems. Generally, artificial systems avoid

this problem, either by dealing with the imitation of a single body part (i.e., arm) or by

implying a similar physical morphology between the demonstrator and imitator (Billard

and Mataric, 2001). Such a built–in capacity is face detection, based on a direct mapping

between the organ representation and the corresponding motor control area (Breazal and

Scassellati, 2002).
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With respect to limb action identification, the recent discovery of the mirror neural system

in the monkey’s premotor cortex (Rizzolatti et al., 1999) has been proposed as the system

responsible for the linkage of self–generated and observed actions (Arbib, 2002). The inter-

pretation is that mirror neurons can allow the matching of the neural command for an action

with the neural code for the recognition of the same action executed by another individual.

Mirror neurons have been observed for reaching and grasping actions, and they are highly

specialized for certain types of movements. It is possible that these neuron properties are

innate, similar to face detection capacity, hence they may explain, up to a point, the neonatal

imitation of gestures. Thus, they can facilitate recognition of hand manipulation and may

be involved in mapping the hand sight into the hand self–motion.

However, even if mirror neurons functionality has been recently incorporated in several

imitation modeling proposals (Billard and Mataric, 2001; Maistros and Hayes, 2002; Metta

and Fitzpatrick, 2002), few attempts have been made, so far, to understand the way they

develop such a highly specialized matching property (Arbib, 2001). We believe that explor-

ing the way mirror neurons’ functionality emerges can provide insights into their ’true’ role

in imitation and language development. We consider that an improved version of our vi-

suomotor model, which is already capable of showing emergence of multi–modal neural

behaviors and to give rise to different dynamics of the neural response, is in a good position

to explore this topic.

With respect to the movement component of the imitative act, most researchers agree that it

is not innately specified, but up to the present it is not known yet how this mapping is

achieved with such specificity. Here, it is important to delimit the existence of two devel-

opmental stages in imitation. First is neonatal imitation, which mainly consists of facial

gesture imitation and is probably supported by a subcortical system (Atkinson, 2000). This

is followed by the emergence of a true imitative behavior, which occurs after a few months

of post-natal life and is marked by the acquisition of eye-hand coordination (i.e., at about

3-4 months) (Butterworth, 1999; Atkinson, 2000).

Our view is that imitation in the former case can be best explained in the terms of dynam-

ical systems theory. From this perspective, development is self-organizing around various

attractors on which the configurations of the system tends to converge (Butterworth, 1999).

From this view, the prenatal movements provide experience to link muscles activations to

body configurations. In our terms (i.e., the terms of the progressive match architecture), this

stage corresponds to learning in the first combinatorial domain, where co–activation of mo-
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tor commands and organ configuration (i.e., muscles activation) establish the foundation of

proprioceptive control of movement. What this stage does, it creates a set of attractors in the

movement–somatosensory space.

Further, seeing the protrusion of the tongue between lips means, in terms of object identifi-

cation, that both lips and tongues visual areas are activated. These are further mapped to the

corresponding motor areas. Here, the oscillatory activity in the two areas can only evolve

towards one of the existent attractors. One attractor, which comprises neural activity for

both lips and tongue movement, is the one that places the tongue between lips. Note that,

the other imitated behaviors, such as mouth opening or eye–movements are even simpler,

as the activity here involves only one area and elicits a limited number of possible actions.

The search in the space of possible behaviors (i.e., see above the effortful search of the correct

action) is equivalent to the formation of the desired action attractor. We can compare this

process, with the formation in the motor network of the directional response in the presence

of visual stimulation. The task in the case of neonatal imitation is more difficult, because it

does not appear to involve any learning of the visuomotor connection, but is actually learnt

on–line, resulting in the convergent correction of the movement. This is possible, we believe,

due to the combinatorial properties of the neurons, which allow proprioceptive, motor and

visual information to be matched.

In the latter case (i.e., after 3 month of postnatal life), imitation represents the result of a

self-organizing learning process. The beginning of true imitative behavior accompanies the

emergence of eye-hand coordination. This suggests that both processes require the develop-

ment of equivalent neurobiological mechanisms. Hand–eye coordination begins to develop

between 2-4 months, inaugurating a period of trial–and–error practice at sighting objects

and grabbing at them. When executing actions, infants perceive and learn contingencies

between the motor activity and the visual image of the movements. Our work focused

upon the modeling of this behavioral scenario in order to develop visuomotor coordination.

We believe that the operation of the developed computational mechanism can establish the

foundations for imitative behavior.
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