
Chapter 6

Models and results

During visually guided reaching for objects, our brain transforms a visual stimulus on the

retina into a finely coordinated motor act. This process employs the activity of neural popu-

lations distributed along several areas in parietal and frontal cortex (Section 3.2). An ubiqui-

tous feature of neurons in the parieto–frontal region is their broad selectivity to movement

direction (Sections 2.1.2). This directional tuning of the neuronal responses has two conse-

quences. First, the generation of motor output is based on a population coding of movement

direction (Sections 2.1.3). Second, co–activation of neurons with similar tuning properties

can establish a mechanism for the transfer of visual information into the motor command

required for reaching.

In this chapter, we address two basic questions on the cortical control of the direction of

movement. First, we investigate by means of computational modeling the mechanisms

whereby motor neurons develop directional selectivity. Section 1 describes the formation

of a directional motor map based on a self–organizing process involving spiking neurons

and using input patterns analogous to proprioceptive feedback. The neural responses of

individual units are characterized and the resulting population code is analyzed and com-

pared to experimental findings of motor coding of movement.

Second, the self–organized motor map is re-used for the simulation of a developmental pro-

cess of eye–hand coordination acquisition. The model proposed in Section 2 explores the

means by which visual directional activity can be correctly used to guide the generation of

the desired motor action. Visual and motor network alignment is discussed in the light of

the connectivity pattern organization and of the individual unit’s contribution to the map-
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ping process.

6.1 Self-organization of neurons in motor cortex for coding the di-
rection of movement

Modeling of the cortical coding of motion direction is relevant to understanding how con-

trol of movement is implemented in the central nervous system. It also represents a crucial

obstacle to be overcome if the goal is the understanding–for–reproducing of the mechanisms

involved in visual guidance of reaching movements. Given the importance of the subject,

it is surprising that only a very small number of studies have been aimed so far at explor-

ing the organization of directional motor maps (see Sections 2.2.3, 2.3). Previous work on

coding of movement trajectories by neural population vectors (Lukashin and Georgopou-

los, 1994) and on visuomotor mapping of direction (Burnod et al., 1992) represents only a

starting point in modeling the organization of motor networks. What is still needed is a self–

organizing neural network model to investigate how directional selectivity and population

coding emerge in the motor cortex.

In this section such a neural network model is proposed. The simulation work is grounded

in the experimental data showing that directional tuning is a prominent feature of motor

neurons (Georgopoulos et al., 1984). The main findings of the experimental studies are: (1)

neurons in the motor cortex are broadly tuned to preferred directions of movement (Sec-

tion 2.1.2); (2) motion in a certain direction is determined by the activity of a large popula-

tion of neurons; (3) the coordinated action of neurons can be characterized by using a neural

population vector, which proves to be a good predictor of motion direction (Section 2.1.3);

(4) particular directions are multiply represented in the motor cortex and cover a directional

continuum; (5) the strength of the connection between two neurons tends to be negatively

correlated with the angle between their preferred directions (Section 2.2.3).

A common approach in building neural networks that code motion directionality is to assign

neurons with preferred directions from a directional continuum (see Section 2.3.2). This is

done without considering the development of the neural selectivity or of the way neurons

relate with each other as a consequence of having certain preferences. Instead of taking

this view, we are interested in investigating the processes whereby directional selectivity

emerges in a neural network. We want to explore how and why individual neurons learn to

respond maximally for a particular movement direction, and not for another. Furthermore,
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Figure 6.1: The motor system consists of a two–dimensional self–organizing feature map of
spiking neurons. The input layer is fully connected to the output map. This has a heteroge-
neous composition of Ne = 70% excitatory neurons and Ni = 30% inhibitory neurons. The
connectivity has a Mexican–Hat profile, represented by short-range excitatory synapses and
long–range inhibition. The neural and connectivity parameters are shown in Table 6.1.

we want to discover the factors that influence the development of preferred attributes and

the locus of acquisition of directional selectivity.

With respect to the representation of movement at the network level, the goal is to explore

the possibility of obtaining in a stable self–organizing map, a distributed coding of a set

of movement directions. The computational demand for the organizational process is to

ensure the generation of distinct directional commands.

The model and the learning scenario proposed here are inspired by the simulation work on

the self-organization of visual feature maps (Section 2.2.2, 2.3.1). This procedural transfer

is grounded in the general idea that developmental principles described for sensory areas

may reflect general mechanisms of cortical computation (Sections 2.2.3, 2.3). If this model

proves successful in simulating the formation of directional motor maps, than it provides

evidence for the generality of the mechanisms employed, while also helping to develop new

hypothesis on the functional principles of the motor cortex.

6.1.1 Structure of the model

The motor system architecture is presented in Figure 6.1. It consists of a two dimensional

heterogeneous self–organizing map with Ne excitatory and Ni inhibitory spiking neurons.

Each neuron in the output map is fully connected to the input layer and is linked by proba-

bilistic connections with other competitive neurons. The input unit activity is characterized
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Model parameters
maxΘ = 3, ∆Θ = 0.2 - threshold parameters
τm = 5 - membrane time constant
u = 0.8, v = 3.5 - refractory period parameters
Fj = 10 - number of spikes stored / neuron
di = 2 - input delay value
∆d = 0.3 - delay spread parameter
∆f = 0.2 - firing time noise
Ne = 0.70 - percent of excitation
ce = 10%, ci = 12% - rates of connectivities
∆c = 15% - randomness on connections number
σe = 4, σi = 3.5 - connectivity decay parameters
max wa = 0.5, max wl = 0.4 - afferent and lateral weights parameters
∆w = 0.1 - weight spread parameter

Table 6.1: Neural and connectivity parameters for the self–organization of the motor direc-
tional map. The neural model is described by Equations 4.2, 4.3, 4.5 in Section 4.3. Detailed
explanations of the connectivity parameters have been given in Section 5.3.2.

by a simple identity transfer function. The activation function of the output neurons is given

by the membrane potential Equations 4.2 in SRM0 model (Section 4.3). The neural response

of an output unit evolves over time by combining the afferent signals with lateral excitatory

and inhibitory feedback. The parameters used for setting the neural model are shown in

Table 6.1 and their meanings have been described in Sections 4.3 and 5.3.2.

The self–organizing feature map (SOFM) has proven highly effective in modeling the forma-

tion of orientation and directional maps in visual cortex (Sections 2.2, 2.3). The basic prin-

ciple of an SOFM is represented by the topology–preserving mapping of the input space

to clusters of nodes in the output map. Learning of the afferent weights is assisted by a

lateral feedback system, which leads to a cooperative organization of afferent and lateral

connections (for the role of lateral connections in the development of cortical maps see also

Section 2.2.4). In a network with a center–surround connectivity pattern (i.e., Mexican–Hat

profile) the repeated exchange of localized excitation and long–range inhibition has an es-

sential role in focusing the network activity, by enhancing the center and suppressing the

activity at a remove from it.

It is also important to point at the sparseness of the connections between the competitive

neurons. This is an important property of the network architecture, which is in agreement
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with biological data showing that in the cerebral cortex each neuron is coupled to a reduced

number of other neurons (Braitenberg and Schuz, 1998). In our network, the probability

of a connection existing between two excitatory neurons i and j decays with the increase

in the Euclidean distance d(i, j). Conversely, for two inhibitory neurons the probability of

connection increases with the distance between them. How fast the connectivity decays is

given by the parameters σe and σi. Details on the procedure used to create the probabilistic

connectivity pattern have been presented in Section 5.3.2. For this simulation, parameters

are tuned such as each excitatory neuron connects probabilistically with neighbors within

distance d = 4, whilst an inhibitory neuron acts upon a fraction of cells placed from distance

d = 4 to the margins of the network.

6.1.2 Learning procedure

Normally, learning in a self–organizing map consists of three steps. First, the activation

of the hidden layer is computed with respect to the input vector. Following this, a best–

matching unit is selected and designated as winner of the learning step. Finally, the weight

vectors are adapted for all units in the winner neighborhood. One way to modify the

weights is as a function of the cells discharge rates, after the network has reached a sta-

ble firing state (Section 4.4). When computing with spiking neurons, a more appropriate

alternative is to apply learning as a function of timing of single firing events (Section 2.2.5).

In the algorithm proposed here, the winner is randomly selected from the subpopulation

of units that fire the quickest in one simulation step. After choosing a winner, learning is

applied as follows. The afferent weights of a competitive neuron i are adapted in such a way

as to maximize their similarity with the current input pattern j. A measure of the similar-

ity is the difference between the postsynaptic potential εij that encodes the input stimulus

and the connection weight wij . Furthermore, a spatial and a temporal neighborhood of the

winner are created, such that only the neurons inside the Nc area and which have fired up

until a reference time Tout are subject to learning. The learning rule is adapted from Ruf and

Schmitt (1998) and is given by the formula:

∆wij = η (εij − wij)
Tout − Ti
Tout

, any i ∈ Nc (6.1)
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Figure 6.2: Modification of the synaptic weight wij is applied as a function of the param-
eters: Tj - time of the presynaptic spike, Ti - time of the postsynaptic spike, d - delay of
transmission, and τm - time membrane constant.

with

εij =

exp(−
s
τm

), if s = Ti − Tj − d ≥ 0,

0, if s < 0.
(6.2)

In equations above, η is the learning rate, τm the membrane time constant, εij is the post-

synaptic potential from presynaptic unit j, and Ti and Tj are the times of the first spikes of

neurons i, respectively j (see Figure 6.2). Note that the temporal neighborhood Tout − Ti

is larger for the winning neurons and decreases for units that fire later. Hence, the largest

change in the afferent weights occurs in the case of the winning neuron.

A similar rule is applied for learning in the lateral weights. The synaptic efficacy of a lateral

connection is modified depending on the activity of the connected neurons and upon the

arrival time of the presynaptic spike. The weight of an excitatory synapse is updated only if

both neurons i and j are in Nc, if they both have fired and if the presynaptic spike has been

emitted before the postsynaptic spike. For example, if the postsynaptic neuron i fired at

Ti, than for all excitatory presynaptic neurons j that fired before Ti and fall inside a certain

spatial neighborhood, the connection strength wij is potentiated. Note that strengthening of

excitatory connections predominates over synaptic weakening. The later occurs only when

the weight exceeds the postsynaptic potential value. Weights are also kept from excessive

increase through normalization.

The learning algorithm for the inhibitory synapses was adapted after the rules proposed by

Levy and Desmond (1985). If a presynaptic activity occurs before the firing of the postsy-

naptic neuron than we have a loss of the strength of inhibitory synapse with the value given
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by Equations 6.1 and 6.2, where Ti − Tj − d > 0 and Tj , Ti /∈ 0. If we have a presynaptic

activity paired with a postsynaptic inactivity than we have a potentiation of the inhibitory

synapse with

∆wij = η [−(εij − ui · wij)]
Tout − Tj
Tout

, any j ∈ Nc and Tj > 0 (6.3)

where ui is the activation of the postsynaptic silent node, averaged over the Tout period.

With the advancement of the simulation time, the neural response becomes more selec-

tive, hence more neurons are silent for other directions than the preferred direction. In this

case, the rules above tend to favor an excessive increase of the inhibitory synapses, which is

avoided through normalization by a fixed N factor.

6.1.3 Training patterns

In the theoretical introduction of this work it was suggested that a significant advance in the

modeling of motor cortex development will be made by identifying the input signals that

drive the organization process (Section 2.2.3). Hence, the milestone of our simulation work

was the formation of a training set, which encodes the directional information needed for

learning and moreover, is biologically plausible.

A source of inspiration in creating the input patterns was represented by the study of Lin

et al. (1997) on neural trajectory computation (Section 2.3.2). Their work investigates how

directional information can be extracted from the firing rates of motor cortex neurons by us-

ing a self–organizing feature map (SOFM). The SOFM is used to establish a correspondence

between the discharge firing patterns of a number of n = 81 neurons computed at different

moments in time, and the resulting direction of movement. Besides reading the directional

information encoded, the self–organizing map allows a visualization of the similarity rela-

tionships between the input vectors. Thus, it indicates that neural discharge vectors for sim-

ilar directions share a higher degree of similarity than vectors coding for opposite directions.

This is a consequence of the fact that for similar directions, neurons fire at approximately the

same rates.

Our hypothesis was that input vectors, which code directional information in the way de-

scribed above, may be used for the self–organization of a directional motor map. The main

assumption we made was that input vectors, which represent opposite directions, are highly

dissimilar. Conversely, topologically close to each other directions are encoded by vectors
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(a) Coding of directions (b) Directions of motion

Figure 6.3: (a) Coding of three movement directions by the input vectors. The red units
are referred to as principal units, since they code relevant information within a pattern.
The rest of the units transmit noisy values. Orthogonal directions such as direction 1 and
direction 2, are encoded by different subsets of input units. Direction 12 is topologically
located between the two directions. Hence, it is encoded by a subset of units shared with the
other two directions’ representations. (b) Directions of movement which the self-organizing
map learns to stably represent.

with similar values. A recent review of the literature on muscular control of movement has

provided compelling support for our hypothesis. It indicated that the training inputs of

the type we have used can be provided by proprioceptive signals arriving from the mus-

cles involved in a movement (Theeuwen et al., 1996; Bolhuis et al., 1998). This is, because

movements in opposite directions entrain activation of different sets of muscles (i.e., ago-

nist/antagonist) that in turn provide feedback signals with distinct representations. An im-

portant future direction of our work is to use experimental data collected from arm muscles

during directional movements to train the motor network (see also Section 7.2.2).

For simplicity we have defined only 12 directions of movement as represented in Figure 6.3b.

Each direction is encoded by an input vector of dimension 16. The input values represent

the firing times of the units (see Section 4.3.4). The values are generated in such a way

that directions which form an angle larger than 90◦ are coded by vectors that are almost

orthogonal (i.e., have a low degree of similarity). Examples are: North and East, or NNEast

and SSWest. Directions that are situated inside an arc circle of 90◦ are encoded by input

vectors with higher degrees of similarities.
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(a) Dissimilarity measure (b) Similarity between patterns

Figure 6.4: (a). Dissimilarity values computed between input patterns representing four
orthogonal directions: North, East, South, West. (b). Similarity values between directions
situated within a arc circle of 900: North, North-West, West-North, West. The similarity (or
dissimilarity) measure is given by the Euclidian distance between the vectorial representa-
tions of the patterns.

The degree of similarity between two vectors is given by the number of units shared in the

representation (Figure 6.3a). For example, if direction North (direction 1 in Figure 6.3a ) is

encoded by the firing times of four input units un, than a direction similar with N, such as

NNE (direction 12 in figure) will be encoded by a set of units uk, so that uk ∧ un = 2 ∨ 3.

Conversely, an opposite direction such as South (direction 2 in figure) is encoded by a set of

units us, with us ∧ un = nil. Note that information on each pattern is distributed over all

16 input units. Thus, a number of four up to five principal units encode the training infor-

mation provided by the input pattern and the rest of units code noisy values. The similarity

and dissimilarity values between four directions of movement are shown in Figure 6.4. The

similarity between two patterns is computed by calculating the Euclidian distance between

the input values on each of the 16 pairs of neurons in the vectors.

After creating a prototype pattern for each of the 12 directions of movement we generate

a training set of 12x20 patterns by adding noise to each value in the original vector by the

formula: u = ui + R(m), where R(m) is a random number generated uniformly in the

interval [0, 0.5] for a principal unit, and [0, 2] for the other units. A small training set was

sufficient for our simulation and it favored multiple representations in the network of each

directional pattern.
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Figure 6.5: Phases of learning in a pulsed neural network: apply a time-coded input pattern
starting from Tstart; integrate competitive units activity beginning with the time Tint; propa-
gate activity through the output layer until Tout; and update connections weights according
with the learning rules. See also Section 5.2 for more details on the implementation of this
scenario.

6.1.4 Simulation

The main phases of a simulation with spiking neural networks and time-coded input pat-

terns have been described in detail in Section 5.2. Figure 6.5 summarizes these stages as

input pattern application, propagation of the network activity and adaptation of learning

synapses. One learning step lasts for Tout = 30 ms and is divided into the following stages

(Figure 6.5). Input patterns are applied starting with the moment Tstart = 0. First integration

of network activity is done at Tint = 9 ms. Network activity is propagated into the output

layer and neurons are allowed to fire for approximately 20 ms, until Tout is reached. After-

wards, modifiable synapses are adapted according with the learning rule, network activity

is reset and the process continues with another input pattern.

For this simulation, the weights of afferent and lateral connections are initialized around the

midpoint of the input pattern values (e.g., 0.5). The learning rate starts with a value of 0.5

and is decreased by a fixed percentage η = 0.999 η. An initial radius of Nc is set to 5 and

is reduced over time to the minimum value of 2. Training was performed for 1000 cycles,

equivalent to applying 240,000 directional sequences. After a coarse organization of the net-

work weights occurred, its characteristics were analyzed, as presented below. The network

training was discontinued for two reasons. First, learning with spiking neurons is faster that

with the traditional, rate-coding model, hence self-organization may occur earlier (see also
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Farkaš and Miikkulainen, 1999). Second, activity in a self–organizing map decreases rather

fast with the advance of the simulation time. This is due to the increase of selectivity in

the neural response. Consequently, the advancement of network training would favor the

formation of narrow tuning responses in a small set of neurons, associated with a complete

silence in the others.

6.1.5 Results

Self-organization of afferent weights

Training of a pulsed neural network start with neurons being equally responsive to all input

patterns. This leads initially, to the activation of the entire network for the presentation

of any input pattern. With the advance of simulation time, the number of neurons that

respond to a particular input vector slowly decreases, as selectivity of the neural response

increases. In the end, in the trained self–organized map, only a small number of patches

of activity occur for each directional command. These are usually organized around the

winners of the corresponding direction. Hence, as a result of the self–organization process

aimed at increasing the similarity between input patterns and weight vectors (Eq. 6.1), the

afferent weights of a neuron that wins mostly for a particular direction resemble closely the

corresponding input vector.

The labeling of the map is performed by marking each output unit with the inputs for which

it is the most representative. Figure 6.6 shows the neurons’ preferred directions labeled

according with their winning behaviors while a test is run. The trained network was tested

with the same pattern set used for learning. This was presented for a number of 10 times,

while the winning behavior of each neuron was recorded. If for instance, neuron i wins

mostly for a particular input pattern, than it is labeled with the corresponding direction. For

the correspondence between directions and numbering labels see Figure 6.3.

The trained network bears a set of features, which have been induced by the self-organizing

network property of a topology-preserving mapping. That is, the similarity relationships

from the input space are translated into neighborhood relations in the output map. We may

say that the network found a way to map directions according to their similarity relations

(see similarity measures in Figure 6.4b). It resulted in most similar patterns being mapped

to neighboring units. Note the succession of neurons labeled with 1, 12, 2, 23, 3, 34, 4, 41 in
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Figure 6.6: Self–organizing map labeled with the winning neurons’ preferred directions. The
preferred direction is given by the input pattern for which the unit is the best representative,
that is, for which it wins most of the times after training has ended.

Figure 6.6.

A relatively high percentage of neurons developed selectivity for the input vectors, while

approximately 45% of the total number of neurons did not respond directly to the presented

patterns. With respect to individual neurons response, we note that 85% of the winners

win for more than one direction of movement (not shown in the picture). Conversely, we

also found about 15% of winner neurons whose first spike is constantly correlated with

only one direction of movement. Together, these observations suggest that even if the most

probable directional information is not read out from the timing of single spikes (i.e., due to

a high number of broadly tuned winners), the second type of unit may also play a role in the

representation of direction (see more in Sections 6.1.6 and in final discussions Section 7.1.3).

Figure 6.7 illustrates the self-organization of the afferent weights for seven units placed at

consecutive locations in the output map. The rough pattern of the initial afferent weights

(left) evolved during training into a smooth profile (right figure), which peaks over different

subsets of input units corresponding to the pattern best learned by that output node. For

instance, output unit 1 is unselective, node 2 is broadly tuned to direction North (encoded
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Figure 6.7: The afferent weights of seven neurons in the output map. (a) Initial random
weights with an average value of 0.45. (b) As self–organization progresses, the weights
organize into smooth hill–shaped profiles. Each weight vector has a peak (up to 0.9 value)
for the input units which code the pattern best learned.

in first 4 input units), node 3 is broadly tuned to direction NEast (input units 2 to 6) and last

4 nodes are more sharply tuned to direction East (inputs 4 to 8).

Rate coding of directional information

Figure 6.6 shows the calibration of the output map with respect to the winning behavior

of neurons. That is, it reflects the organization of afferent connection weights. Apart from

this type of labeling, normally performed for a SOM, we want to characterize the selectivity

of each neuron as a function of its discharge rate during a time interval. Thus, for each of

the 12 directions we run a validation procedure consisting of the following: while 30 input

patterns are applied with a frequency of 60 Hz, the activity of the network is allowed to

oscillate and the firing rates of neurons are recorded. The preferred direction of the unit is

given by the input, which evokes the highest discharge rate.

The network labeled according with the firing rate behavior is presented in Figure 6.8. Only

neurons with tuning levels above 30% are represented and the tuning value (normalized)

is indicated by the length of the thick line. Note that compared to Figure 6.6 the number

of unselective neurons has decreased to approximately 25% of the total number of neurons.

The existence of approximately 15% neurons which are not directionally selective has also

been described experimentally in the motor cortex (Georgopoulos et al., 1984).
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Figure 6.8: Self–organizing map labeled with the neurons’ preferred directions, computed
as the movement direction for which a neuron’s discharge rate is highest. The level of neu-
ral tuning (normalized) is represented by the thick line. Two types of neural behavior are
shown: winning neurons (in black) and lateral neurons (in blue). See the text for details on
the functions of these neural behaviors. In the left side, an assembly of neurons is delimited,
composed of winning and lateral neurons whose collective firing encodes the movement
direction towards North. The gray arrows indicate the excitatory connections from the neu-
rons which fire first (winners) to the neurons which fire later (lateral units).

The increase in the number of selective neurons compared to the previous calibration sug-

gests that neurons other than winners have also developed directional preference. Thus,

the analysis of the discharge rate behaviors revealed a set of neurons (drawn in blue in

Figure 6.8) that had remained invisible during the first calibration of the map. These neu-

rons have small values on the afferent weights and never won during the testing procedure

for any of the directions involved. However, when recording their firing behavior in time

it occurs that they spike later than the winners and their discharge rates are tuned to the

direction of movement.

We refer to the latter units as lateral neurons, due to the fact that their spiking activity is

mainly caused by the integration of the lateral excitation in addition to the afferent input.

The lateral synapses from the winners (which fire quickest) to the later firing neurons are

illustrated for a small assembly of neurons in the left upper corner of Figure 6.8. Because
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neither the lateral nor the afferent simulation solely can cause firing, the lateral neurons

need to integrate both sources of excitation before they emit a spike. This constraint leads to

a more selective directional response. Their tuning curves are less broadly than those of the

winner neurons, with a mean width of 30◦. Later in this chapter, a third category of neurons

is described that need to integrate three types of inputs in order to spike.

The joint activation of the two types of neurons give rise to a sort of collaborative cell as-

sembly (Reilly, 2001), which enhances the strength of excitation between neurons tuned to

similar directions of movement and suppresses the response in opposite directions. On the

left side of Figure 6.8 the approximate boundaries of the cell assembly coding for movement

direction North are indicated. The most important effect of collaborative cells assembly for-

mation is the emergence of a population coding (see Section 6.1.5). Both the emergence of

collaboration between neurons and the formation of a population code are supported by the

horizontal feedback system. That is why, the organization of the lateral weights deserves a

particular analysis.

Self–organization of lateral weights

The formation of the directional map shown in Figure 6.8 was driven by two principles.

First, the SOM property to preserve the topological relations between input patterns led

to the formation of an ordered representation of the directional space. Second, the lateral

connectivity pattern with a Mexican-hat profile played an essential role in shaping the net-

work activity. Thus, it favored the formation of distributed, stable representations for each

direction of movement.

The lateral connection strengths are not static, but they evolve together with the afferents.

For each firing neuron the lateral weights are adapted by a Hebbian learning rule (Equa-

tion 6.1) according to how well the neuron’s activity correlates with the activities of other

neurons. As the afferent weights organize into a smooth profile (see Figure 6.7), lateral corre-

lations between neurons fall off with distance and become stronger only between neighbors

with similar directional selectivity. Thus, the excitatory weights between neurons which

develop preferences to opposite directions decrease through normalization and end up be-

ing pruned. Conversely, inhibition (decorrelation) increases between neurons that become

selective to orthogonal input patterns.

To extract the common features of the lateral synaptic strengths we calculated the mean
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Figure 6.9: The dependence of the mean value of the lateral connection strength on the an-
gle between the preferred directions of the neurons in a pair. The mean value of the weight
was calculated by averaging over all weights, which connect neurons, whose preferred di-
rections form the same angle.

value of the connection weight as a function of the angle between the preferred directions

of two neurons in a pair. Figure 6.9 shows the mean values calculated considering all hori-

zontal synapses in the network. We found that the mean connection strength is negatively

correlated with the difference between preferred directions of the neurons in a pair. Our

findings are in good agreement with the experimental estimation of lateral synaptic weights

between motor neurons, as being a function of the difference between preferred directions

(see Section 2.2.3).

Different profiles of afferent and horizontal strength vectors develop in winners as opposed

to lateral neurons. One has to remember that during learning the change in all synaptic

weights is constantly scaled by the difference between the time of the neuron’s first spike

and a fixed arbitrary time out (see Equation 6.1). Hence, the later the lateral neurons fire,

the smaller the adaptation of their afferent weights. Instead, their firing is triggered by the

receipt of a lateral spike, therefore, the more the lateral connections will be strengthened.

Conversely, because in winner units the first spike is caused by the afferent stimulation,

they develop an opposite profile to the weight vector, characterized by strong afferent con-

nections and small values of the lateral weights.

The strength of inhibitory connections also evolves over time. Inhibition increases whenever

the firing of a presynaptic inhibitory neuron is correlated with postsynaptic inactivity (see
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Section 6.1.2). Because inhibitory synapses run over large distances, the firing of an assem-

bly of neurons for one direction of movement will result in lateral inhibition spread all over

the network. Consequently, neurons belonging to assemblies that are not involved in cod-

ing the current direction receive a high proportion of inhibition. Because lateral neurons rely

mainly on lateral excitation to fire, they end up by remaining silent. Instead, winner neu-

ron activity is due to afferent stimulation, hence they fire (even accidentally) in more cases

and for more directions than the lateral neurons. Therefore, the responses of lateral neurons

are more suppressed (inhibited) than those of the winners. Consequently, it enhances their

narrow tuning to the input stimuli (see Section 6.1.5).

It is important to explore with future models the influence on the lateral connection organi-

zation of variants of learning procedure and of different rates of connectivity. For instance,

a learning algorithm based on the timings of a spike series would allow the winner neurons

to integrate the effects of lateral feedback. This would cause a significant strengthening of

the entire lateral connectivity system. The increase in the number of lateral neurons can be

obtained by implementing higher connectivity rates, for instance excitatory neurons fully

connected with neighbors within a certain area. A strong recurrent feedback is essential

for the generation of neural oscillations in the network that have a role in maintaining the

movement representation in time (see also Section 7.1.3).

Population coding

To this point, results have been presented in terms of selectivity of individual cells to the di-

rection of movement. With few exceptions, our findings indicate that neurons (both winners

and laterals) are broadly tuned to several directions of movement. Moreover, the command

in each movement direction elicits in the output map the activity of an entire population of

neurons (i.e., the collaborative cell assembly). These observations suggest two ideas. Firstly,

directional information cannot be read out from the individual response of the majority of

neurons (e.g., 80%). Secondly, it is possible that directional information is represented in

the collective activity of subsets of neurons broadly tuned to similar directions. The later

hypothesis is illustrated in Figure 6.10(a) where the joint activity of neurons with various

preferrences, coding one direction of movement, is shown. That is, more than 40 neurons

are firing at different rates while representing direction North.

In order to test the population coding hypothesis we computed for each of the 12 direc-
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(a) Population coding of direction N (b) Population vectors for 12 directions

Figure 6.10: (a). Discharge rates (normalized) of the population of neurons coding direction
North. Each bar represents the contribution of single neurons and its orientation corre-
sponds to the preferred direction of the neuron. (b) Population vectors for 12 directions of
movement. Each vector is a resultant of individual neuron contributions (only the neural
population for direction N is shown).

tions of movement the neural vectors, by using the formula (adapted after Lukashin and

Georgopoulos, 1994):

Px(t) =
∑

Vi(t) · cosPDi, Py(t) =
∑

Vi(t) · sinPDi. (6.4)

where Vi is the discharge rate of the neuron i during a testing interval of 600 ms. In Equa-

tion 6.4 we consider that the preferred direction of the neuron PDi is given by its discharge

behavior, as described in Section 6.1.5 (see also Figure 6.8). The populations vectors yielded

by the vectorial summation Px+Py are shown in Figure 6.10(b). Note that the neural vectors

resulted point very closely to the desired directions of movement.

The population code is an effect of the distributed representation of direction, caused by

the broad selectivity of output map cells. Each cell’s activity is highest for a movement

in a particular direction and decreases with movements further away from that direction.

Figure 6.11 shows the discharge rates (normalized) of four neurons for different directions of

movement. In the absence of a directional continuum, we cannot present an exact estimation

of the tuning curves. However, we can approximate the shape and the width of the neural

response. Neurons have unimodal tuning curves that differ from cells with the width of

the curve of 120◦ (neuron 3 responds to maximum 5 directions of movement) to cells with a
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Figure 6.11: Discharge rates (normalized) of four directional selective neurons plotted as a
function of the movement directions. The preferred directions of neurons of the neurons are
located at approximately 90◦ from each other. Note that neurons show different shapes and
widths of the tuning curves.

curve width of 30◦ (not shown in figure). The median of the curve width is at 50◦. A given

neuron participates in coding of movements in directions which form an angle no larger

that 90◦ with its preferred direction. Since directions forming an angle larger than 90◦ are

encoded by orthogonal input vectors, the participation of the neuron in coding movement

in such directions is due mainly to the successive propagation of excitation in the lateral

feedback system.

The width of the neural tuning found in our model is in partial agreement with the experi-

mental findings of Amirikian and Georgopoulos (2000), which describe real neurons’ tuning

curves with a half-width from 30 to 90◦ and the median 56◦. Their results indicate that mo-

tor cortical cells are more sharply tuned than previously thought (i.e., do not fit the cosine

function). Our simulation findings point in the same direction (note that in our case the av-

erage of the midpoint of the curve is at 25◦), but more modeling work is needed for a better

fit of the results to the experimental data.

To this end, we can try to put everything together into a hypothetical scenario of how the

map response evolves in time from the moment it is presented with a move command. First,

winner neurons are activated very rapidly. By doing this, the first spikes occurring in the

network offer a quick motor output available to initiate the movement (e.g, if this is desired).

But, since winners’ tuning to the intended direction of movement is rather broad, this initial

specification of the direction is very rough. In our case it restricts movement in a sector of
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30◦ around the desired direction. One can also compute the instantaneous population code

contributed by the activated winners, but this information is not more accurate than the

readout of single spike timings from a few sharply tuned winning neurons.

Following the winners’ activation, the lateral neurons get involved due to the horizontal

excitation spread. During successive propagations of activation in the neural assembly, the

lateral neurons contribute to creating a steady state for the network activity. This state repre-

sents the attractor of the desired direction and has a completely distinct position in the space

for each of the learned directions. At these immediately successive stages of movement ini-

tiation (or movement preparation) the directional information can be read out correctly to

drive the movement accurately to the target.

6.1.6 Discussion

In this section, a neural network model was proposed for the emergence of directional se-

lectivity in motor cortex, based on acquired experience (i.e., proprioceptive feedback). The

self–organized network exhibits properties that are consistent with the experimental find-

ings on biological motor control. Furthermore, we believe that the modeling process can

provide us with valuable knowledge about the organization and developmental principles

of the motor cortex. The main conclusions are summarized as follows.

First, the model shows spontaneous emergence of a feature map during unsupervised learn-

ing and starting from random afferent and lateral connections. The self–organization of the

network leads to a stable, ordered representation of 12 directions of movement. Most of the

neurons in the self–organized network develop directional selectivity. All directionally se-

lective neurons have a preferred direction, computed as the movement direction for which

the neuron’s discharge rate is highest. Furthermore, directionally selective units can be di-

vided into two categories. Winners are units whose afferent weights are tuned to the input

vectors and this is reflected in a rapid response to the movement command. Lateral neurons

are units whose firing is determined by the integration of lateral excitation with afferent

stimulation.

With respect to winner neurons’ directional tuning, we found that the vast majority of them

are broadly tuned to several directions of movement. However, in the case of a small percent

of winner neurons (about 15% of all units) directional information is accurately encoded in

the timing of the first spike. It is noteworthy, that the original experiments of Georgopoulos
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et al. (1982) also described the existence in the motor area of fast responding neurons, which

are significantly tuned to one direction of movement. It is possible that the central nervous

system uses this directional information for the initiation of fast movements, in a similar way

the visual brain uses single spikes to take rapid decisions (Thorpe et al., 2001; see further

discussion in Section 7.1.1).

To summarize these findings, we believe that the main outcome of our model is the emer-

gence of directional selectivity in a motor self–organizing map of spiking neurons. Even

if our model is a very simplified image of cortical motor computations and needs further

refinements, we believe it represents a progress in the simulation of motor cortex organiza-

tion. It was motivated by the absence in the motor control field of computational studies of

how motor directional selectivity emerges (see Section 2.3).

The results obtained emphasize the advantages of modeling the self-organization process, as

opposed to assigning neurons with preferred attributes (Lukashin and Georgopoulos, 1994).

Thus, in our model, neurons can effectively ’gain’ a preferred direction, as a function of the

neural parameters, noise and location within the network. It shows that preferred attributes

are not developed solely based on the neural features but also as function of its interactions

with the network. Conversely, directional knowledge is encoded at the network level, that

is in the horizontal connectivity, as well as in single neurons responses. We believe that

by modeling the developmental processes, we can help to reveal the unknown functional

principles of motor cortex organization.

An important issue concerns the function of the lateral connectivity system in the formation

of the directional map. The role of horizontal connections in the organization of sensory

feature maps have been emphasized recently by many studies on the visual cortex (see

Section 2.2.2). However, much less is known about the profile and the function of lateral

connectivity in the motor cortex. Our results indicate that neurons that develop similar di-

rectional selectivity become functionally correlated. In the trained map it was found that

the strength of connection between neurons in a pair becomes negatively correlated with

the difference between their preferred directions. This is an important modeling finding,

which is in complete agreement with experimental estimations and previous simulation

work (Georgopoulos et al., 1993; Lukashin and Georgopoulos, 1994. See further discussion

in Section 7.1.2).

As a result of the distributed representation in the network of the directional information,

we can observe the emergence in the model of a population coding. This result is even
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more interesting, as it was obtained with a self–organization process based on the timing

of single spike events. Note that during training any information regarding the discharge

rate behavior of neurons was discarded. Furthermore, by its nature the self-organization

mapping focuses upon learning winner neurons. Hence, the emergence of a distributed

representation of direction is determined by the organization of afferent and lateral connec-

tions. Firstly, as the afferent weights of a winner become more similar to an input vector,

the unit increases its sensitivity not only to the best matching input, but also to all similar

inputs (see the similarity measure in Figure 6.4). Secondly, the network response to one di-

rection is amplified by the lateral feedback system, which activates the lateral neurons that

are not directly responsive to the input stimulation. We may conclude that the population

coding is a function of both the properties of the input space and the built–in network’s

constraints which allow the formation of collaborative cell assemblies (see also discussion

in Section 7.1.1).

In our population codes, the individual contributions of single neurons can be summed up

using the population vector scheme (Lukashin and Georgopoulos, 1994). Even if the neural

vectors slightly deviate from the intended direction of movement, the main achievement of

the model is that it is able to provide distinct commands for each direction (Figure 6.10).

This means that the self–organizing map managed, within a distributed representation, to

form stable attractors for each of the directions involved. Future work is aimed at tuning

the neural parameters and the network design constraints in order to increase the accuracy

of where the population vector points.

6.2 Development of visuomotor alignment of directional codes

A fundamental operation of animal brains and robot controllers is the integration of visual

information with motor commands. Visually guided reaching in primates is considered to

involve a series of neuronal events that transform retinal information about target location

into the metrics of arm movement (Section 3.1). Most traditional modeling efforts using neu-

ral networks for robotic motor control have focused upon developing various formalisms

capable of doing the coordinate system transformation (Section 3.1.1). Nevertheless, these

implementations are neither relevant to the biological motor control, nor are they very adap-

tive or capable of learning and development (see Kalaska, 1995). Conversely, it was pointed

out that inspiration could be drawn from the way motor control is realized in living systems.
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Thus, recent behavioral and electrophysiological findings gave rise to a conceptual frame-

work for the understanding, and possibly implementing, the computational mechanisms

underpinning visuomotor coordination (Section 3.2). The work presented is in agreement

with these latter theories.

In this section, an artificial neural network model is proposed to address a basic issue of

visuomotor coordination: what are the computational mechanisms that allow visual in-

formation on the direction of movement to evoke an appropriate motor response in the

same direction? We believe that this operation meets the basic computational demand for

visuomotor mapping and represents a building block of the perception–action cycle (see

Section 3.1.2).

Our approach to the visuomotor coordination problem was inspired by experimental data

showing that neural selectivity to movement direction is a ubiquitous feature of the parieto–

frontal networks involved in reaching (Section 2.1.3). During visual analysis of movement

and at all stages of motor control the activity of a substantial percentage of movement–

related neurons depends upon the direction of movement (i.e., involves direction selective

cells) (Kandel et al., 2000; see also Section 2.1.2). The idea was to use the motion selective

cell as the basic information-processing element from which neural networks capable of vi-

suomotor control are built. Moreover, it is currently believed that visuomotor mapping of

information (including coordinate system transformation) is realized progressively, by the

gradual involvement of several populations of neurons (Section 3.2). We propose that the

correlated activity of motion selective cells in the parieto–frontal areas meets the basic com-

putational demand in the chain of operations required for visually guidance of movement.

The learning algorithm proposed here consists of a sequence of processing steps. First, the

visual perception of a moving stimulus is translated into the firing pattern of directionally

selective visual neurons. Next, this activity is transmitted to the motor areas that are in-

volved in the control of movement direction. Simply, by the correlated firing of visual and

motor neurons with similar neural response, a communication pathway for the directional

information is established. In our simulation, the visual system corresponds to some early

stages of visual information processing (e.g., retina and primary visual cortex). We believe

that an equivalent computational mechanism can operate for the coupling of two or more

networks of directionally selective cells located at any stages along the parieto–frontal net-

works involved in reaching.
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Figure 6.12: Neural architecture for the alignment of visual and motor representations of
direction. The left part represents the visual system, consisting of a retina and a cortical
visual layer. On the right is shown the spiking self–organized motor map trained to encode
12 directions of movement. The visual cortical layer is connected to the motor map through
a synaptic pathway subject to spike–timing dependent plasticity.

6.2.1 Architecture of the model

In order to simulate the computational mechanism described above, we have implemented

a very simple architecture consisting of a visual system connected to a motor map. There

are two input layers and two ’cortical’ layers: the motor area and the visual area. The visual

area is represented by a layer of directionally selective neurons which have receptive fields

from an input, retina–like layer (see description in Section 6.2.2 below). The motor area is a

self-organizing feature map trained to represent 12 directions of movement. The organiza-

tion process has been presented in Section6.1. All parameters describing the spiking neural

model (i.e., postsynaptic potential, refractory period, transmission delays) are kept constant

from previous simulation (Section 6.1, Table 6.1).

Each cortical neuron receives afferent connections from one input layer and lateral connec-

tions from other neurons in the same area. The visual cortical layer is fully connected to the

motor map. The implementation of full cortico–cortical connectivity, rather than a coarse to-

pographic ordering is motivated by the topology and the small scale of the networks. Due to

the reduced dimension of the networks one can consider them as being tiny patches of cor-

tical areas, large enough to comprise a complete representation of all features of input space

(i.e., directions) at several positions. Full connectivity is required at this level to ensure that

any population of motor neurons has access to all visual directions of movement.
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In our view, the development of visuomotor coordination is achieved in two phases. During

an initial organizational stage, the motor and visual systems develop independently, neu-

ral selectivity to the directional information. This stage ends up with the formation of two

cortical maps, which stably encode direction of movement. Next developmental stage cor-

responds to the effective coupling of the two systems, which are allowed to interact and to

learn, and eventually to coordinate. Experimental data concerning infants visual develop-

ment indicate a prior emergence of cortical orientation mechanisms, followed at three month

of age by the development of selectivity to motion (Atkinson, 2000). The later enables the

cortical control of eye and hand movements. From this age until the age of 5 − 6 months

the cortical mechanisms for reaching (i.e., for eye-hand coordination) are developed. These

observations indicate a possible sequencing of the processes involved in the perception and

control of motion and in the achievement of visuomotor coordination.

The separation of the developmental stages is usually implemented by models of visuomo-

tor coordination, but most commonly the directional maps are obtained by assigning (rather

than developing) preferred directions to the motor (and/or visual) neurons (see Bullock and

Grossberg, 1993; Salinas and Abbott, 1995). An original feature of our visuomotor mapping

model is that it is based on a motor network, which has self–organized to represent direc-

tionality. Hence, it allows natural interactions between neurons and a self–developed way

to encode the direction of movement.

In the next subsections, we focus upon describing the visual coding of movement direc-

tion and we proceed to the modeling of visuomotor coordination development. The reader

should refer to the description of the motor map organization from the Section 6.1.

6.2.2 Visual coding of movement direction

After several decades of research on visual processing of information, it is now well estab-

lished that the cortical analysis of visual space relies on the functioning of a fundamental

neural machinery referred to as the hypercolumn (Section 2.2.2). A hypercolumn represents

a set of columns which are responsive to lines of all orientations from a particular region

in space via both eyes, and to movements in directions orthogonal to the orientation axes

(Kandel et al., 2000). Experimental results have described a precise organization with an

orderly shift in axis of orientation (or direction) from one column to the next (Section 2.2.2).

The formation of orientation and directional selectivity in the visual cortex has been exten-
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sively modeled using the self-organization paradigm (Kohonen, 1984). Most commonly, di-

rectional selectivity is developed in a map of cells with orientation preferences (Section 2.3.1).

When the self-organized visual map is presented through the retina with a moving stimulus

of a certain orientation, its response is represented by the firing of a certain set of neurons.

These are the cells in the network which receive activation from retinal units located along

the trajectory of the moving stimulus and whose preferred orientations (i.e., directions) are

similar to the stimulus attributes. For an illustration of this process the reader can refer to a

demonstration of how a moving oriented line is processed in a visual feature map (Bednar

and Miikkulainen, in press; http://www.cs.utexas.edu/users/jbednar/sweeping small.html).

Based on these findings, our visual area was implemented with a built–in, basic capacity

of signaling motion direction. We have simulated a hypercolumnar organization based on

directionally tuned neurons. One hypercolumn consists of 4x4 neurons, each firing for only

one preferred direction and being silent for movements in different directions. Excitatory

lateral synapses connect each neuron with the first order neighbors that have the same pre-

ferred direction.

The cortical map of area 18x18 is connected to a retinal layer formed from 6x6 neurons (left

part of Figure 6.12). Each cortical neuron receives input from a fixed-size receptive field

of dimension 3x3 units. The receptive field of one neuron (i, j) was centered at (i/3, j/3)

and the afferent weights were initialized within the range [0.5, 1]. The magnification factor,

which is the ratio of cortical neurons per retinal neurons, is 9. In this way, it allows dif-

ferent receptive fields for each location in the retina (see description of implementation in

Section 5.3.2). The lateral weights were initialized within the range [0.3, 0.4]. Parameters of

the visual model were inspired by the simulations of visual cortex organization performed

by Miikkulainen and colleagues (1996, 1998).

The scale of the hypercolumn dimension and the range of lateral connectivity are clearly

a severe simplification. The built–in capacity for signaling motion was also implemented

for simplicity reasons, as a substitute for the self–organization of the visual map. It was

motivated by our intention to focus rather on the motor network organization and the vi-

suomotor mapping process, than on the organization of a visual directional map. The main

reason was that the formation of visual cortical maps has been extensively modeled com-

pared with that of the motor cortex organization (see Sections 2.3). Nevertheless, this simple

mechanism allows us to investigate the problem of directional information mapping, while

retaining the principal characteristics of visual feature maps (i.e., narrowly tuned directional
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Figure 6.13: The visual input to the model consists of moving bars of a fixed length. There
are 12 input patterns, corresponding to bars moving in the 12 directions of motion that can
be controlled by the motor network. Movement of a bar through the retina elicits the activity
of the cells located along the direction of motion.

neurons, lateral connections, receptive fields).

The retinal input to the system consists of directionally oriented moving bars of a fixed

length (see Figure 6.13). A set of 12 input patterns was created corresponding to the 12 di-

rections of movement controlled by the motor network. A bar moving in a certain direction

in the retina determines the retinal neurons located along its pathway, to spike at a fixed

continuous rate. The retinal activation reaches the visual layer after an average delay of 60

ms. This value was implemented in accordance with the delay existent in the brain between

retina and primary visual cortex (Thorpe and Gautrais, 1997).

6.2.3 Learning procedure

The learning scenario was inspired by the sensorimotor stages that an infant progresses

through to develop eye–hand coordination. When executing movements during the early

motor–babbling period, infants perceive and learn contingencies between the motor activity

and the visual image of their actions. By doing this, the simultaneous moving and tracking

of the arm can provide the behavioral context for the development of visuomotor coordina-

tion. This becomes functional from about four months onwards, when infants start to make

visually directed arm movements (Atkinson, 2000).
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The behavioral framework described above is simulated by using the paradigm of direct

inverse modeling (Kuperstein, 1988), also known as the motor babbling approach. This has

been discussed in detail in Section 3.3. The general algorithm consists of three steps: (1) a

movement in a random direction is generated, (2) the visual image of the arm moving is

recorded, and (3) the systems learns the correlation between the motor command and the

visual effect of the movement. Most of the previous models of visually guided arm reaching

have been based on different forms of error-correction mechanisms (Ritter et al., 1989; Fiala,

1995; Jordan, 1996). Only recently, it was pointed out that unsupervised learning means can

also lead to an accurate mapping of sensory information (Salinas and Abbott, 1995; Burnod

et al., 1999; see also Section 3.3).

Prior modeling work using correlation-activity associations was based on rate coding neu-

rons, where learning is applied as a function of neural discharge rates (Salinas and Abbott,

1995; Baraduc et al., 1999). In this thesis, the focus is upon learning and computation with

spiking neurons, based on the timing of single firing events (Section 4.2.3, see also Sec-

tion 6.1). We believe this represents a simpler and more adequate framework for the study

of visuomotor mapping through unsupervised means. That is, because detecting temporal

correlations between populations of neurons is a natural computation with spiking neurons

which has no equivalent in the rate coding networks.

In our algorithm, one learning step consists of a sequence of actions as follows (see Fig-

ure 6.14):

1. The motor input units generate a command for movement in a random direction d.

This input elicits, in the motor map, the activation of the neural assembly involved in the

representation of the direction d. The activity in the motor cortical population is maintained

for a time interval of 400 ms, by the activation of the input command with a constant firing

rate of 30 Hz.

2. Following the movement onset (i.e., at D1 = 100 ms after the motor command is

issued) the retina is presented with a bar moving in direction d. This motion persists until

the end of the learning cycle. After an average delay of D2 = 60 ms, the retinal information

reaches the visual network, where the motion selective cells fire and signal the direction.

3. The cortical visuomotor circuit transmits the neural activity from the visual to the

motor area with a delay of D3 = 50 ms.

4. During a time window of approximately 200 ms while both networks are active,
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Figure 6.14: Schema of the training procedure used for the alignment of visual and motor
directional representations. Note that the motor output becomes visual input and the visual
activation is fed back into the motor network. The delay D1 = 100 ms corresponds to the
interval between the time moment when the motor command was issued and the eye starts
seeing the arm movement. The delay D2 = 60 ms represents the time required by the visual
input to get from the retina to the visual network. The third value corresponds to the transfer
delay from visual area to the motor area of D3 = 50 ms.

spike–timing dependent learning is applied to the inter–cortical connections. The connec-

tion between a visual presynaptic neuron j and a motor postsynaptic neuron i is increased

as a function of the time difference between the arrival of the postsynaptic potential tj and

the firing moment of postsynaptic neuron ti:

∆wij =


η (
∑
tj

εij − wij), if (∃) εj 6= 0

0, otherwise
(6.5)

with

εij =

exp(−
ti−tj
τm

), if ti − tj ≥ 0.

0, if ti − tj < 0.
(6.6)

In Equation 6.5, η represents the learning rate. The sum is calculated over the decayed

values of postsynaptic potentials εij coming from the visual neuron j. Each potential is

computed by using the Equation 6.6, at the moment ti when neuron i fires. The summation

represents one way to ensure that the last presynaptic spike that has reached the neuron

i is considered for learning. Difficulty arises from the large delay (D = 50 ms) between
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the visual presynaptic and the motor postsynaptic neurons, correlated with the exponential

decay of the ε values.

Furthermore, Equation 6.5 states that no modification of the synaptic weight wij is per-

formed for time steps prior to the arrival of at least one visual spike to the motor neu-

ron. That is, because about half of the time in a learning step, the motor neurons do not

receive any activity coming from the visual network, due to the cumulated delay value

D1 + D2 + D3. Hence, by applying anti–Hebbian learning a rapid pruning of all connec-

tions would occur. Our simplification is meant to speed up the learning process. More

realistic scenarios that lead to similar results can be implemented, with the condition that

the overall time when the visual synapses are active is much larger than the initial time in-

terval when they are silent. In our case, a reduction of the strength of connection occurs only

if the weight value increases over the value of presynaptic spikes effects.

Learning with the above algorithm happens quickly, mainly because the inter–cortical con-

nection weights are initialized with low values between [0, 0.1] and strengthening of synapses

dominates over synaptic weakening. The learning rate η was set to 0.1. After 500 cycles a

pattern of strong connections develops from the visual to the motor area, causing the align-

ment of visual and motor neural representations in such a way that permits visual informa-

tion to drive motor movement.

6.2.4 Results

To test the learning of visuomotor mapping of direction, the retina is presented with a bar

moving in a constant direction for a time period of 400 ms, while the activity evoked in

the motor map is recorded. For each of the 12 possible direction of motion, this motor

activity is analyzed with respect to the shape of the firing patterns elicited (i.e., neurons

involved) and to the population vector resulting. Figure 6.15a shows the discharge rates

of the motor neurons activated by the visual information coding the movement of a bar in

direction North. An initial qualitative analysis reveals that the firing patterns elicited in the

motor network in the visual condition (i.e., when the motor map is exclusively driven by

the visual stimuli) and in the motor condition (i.e., when a movement command is issued,

see Figure 6.10a) are very similar.

Moreover, if we compute the population vectors (PV) in the visual condition, we find that

the motor PVs driven by visual information point very closely to the desired direction of
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(a) Motor activity in visual condition (b) Motor population vectors in visual condition

Figure 6.15: (a) Population activity occurring in the motor network in visual condition, while
a movement in direction North is perceived. The network activity elicited by the visual
input resembles very closely the population activity which controls movement in the same
direction (see Figure 6.10a). (b) The motor population vectors computed during the visual
condition for 7 directions of movement, by using Equation 6.4.

movement (Figure 6.15b). This means that the visuomotor system learned how to map

correctly the visual information into directional movement. Alignment of the activity in

the two networks is due to the selective strengthening of the cortico–cortical connections

associating visual and motor neural populations with similar directional selectivity. In the

following section, we try to explain how the alignment of the maps has occurred and what

are the characteristics of the inter–cortical connectivity which allow it.

Organization of inter–cortical connectivity

The reader is reminded that one of the main results of the simulation on motor cortex self–

organization was that the strength of lateral connections is negatively correlated with the

difference between neurons’ preferred directions. With respect to the visuomotor model, we

want to perform a similar analysis of the cortico–cortical connections. Hence, we compute

the cumulated weight value for all synapses between neurons whose preferred directions

form the same angle. Results are shown in Figure 6.16. To illustrate the result the cumu-

lated (normalized) value was used, instead of the average measure, because of the large

number of weights with very small values (< 0.1) resulting from initialization. However,
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Figure 6.16: Dependence of the cumulated (normalized) weight value on the angle between
preferred directions of neurons. Note that maximal connectivity strengths correspond to an
angle between preferred directions of 30◦.

both measures indicate the same finding: the negative correlation of inters–cortical connec-

tion weights with the difference between the preferred directions of the visual and motor

neuron pairs.

In comparison to the organization of lateral weights in the motor cortex (Figure 6.9) the

visuomotor connectivity is characterized by a larger distribution of weights values. In the

latter case, non-zero weights exist between neurons with PDs forming an angle up to 150◦

and the peak of the synaptic strength corresponds to a difference between PDs of 30◦ (i.e.,

compared with 0 for the motor map). Both features suggest a broader coupling of neurons,

which has an effect on the accuracy on the generation of the desired direction of movement.

The findings with respect to the strengths of the mapping connectivity are relevant to those

inferred mathematically by Salinas and Abbott (1994). The authors proposed that for map

alignment to occur, the strength of the synaptic connection between neurons has to depend

only on the magnitude of the difference between their preferred locations (i.e., directions)

(see Section 3.3.3). In our simulation we found that the function between the strength of

connection and the angle is a negative correlation.
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Analysis of neural properties

The organization of the inter–cortical connections as described above, indicates one of the

causes of the networks alignment: the visual and motor neurons with similar directional

preferences become selectively coupled. Strengthening of these synapses instead of others

occurs due to the time–correlated activity of those visual and motor neurons involved in

coding the same direction of movement.

The above analysis is quantitative. It shows that at the population level, neurons coding

similar directions become selectively coupled, but does not tell us how many and which of

the motor neurons respond to visual information. To answer these questions, we begin by

examining the profiles of motor activity patterns in the visual and motor conditions. The

analysis reveals differences with respect to which neurons are activated in each condition

and in the tuning properties of those neurons involved.

First, in the visual condition a larger distribution of the preferred directions of neurons in-

volved in the generation of movement is observed. Compared to the motor condition, where

neurons participate in coding directions which form an angle no larger than 90◦ with their

PDs, in the case of visually guided movement neurons with optimal tuning up to 150◦ from

the current direction are activated. As we mentioned above, this broad activation is due

to the development of inter–cortical connectivity that links more than only neurons with

similar preferred directions.

The formation of this visuomotor coupling can be explained by considering the character-

istics of the learning procedure and the specifics of the motor neural responses. In our

learning algorithm, for a synapse between two neurons to be strengthened, the presynaptic

visual spike which travels through the axon for about 60 ms (i.e., time interval whilst the

postsynaptic neuron can fire up to 8 times) has to reach the postsynaptic motor neuron in

a short time window before this one fires. Obviously, this large delay makes the synchro-

nization of the presynaptic and postsynaptic activities more difficult. Accordingly, motor

neurons, which fire at high discharge rates during the whole movement, rather than neu-

rons which fire precisely timed, but fewer spikes, will be favored in establishing functional

connections with the visual neurons.

The analysis of the dynamics of motor neurons reveals two things. First, the neurons that

become responsive to the visual stimulation are indeed those neurons (lateral or winners)

that exhibit high discharge rates in the motor condition. By firing during both the execution
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and the perception of movement direction, these units give rise to a new type of visuomotor

neural behavior (see discussion in Section 7.1.3). Second, for each direction of movement we

found that about 20% of the motor neurons remain silent during the visual condition. That

is, they participate in the action execution in the motor condition, but not when the stimulus

is visual.

Third, an interesting finding is the activation during the visuomotor mapping of a particu-

lar subset of motor neurons, from those, which are not very active for movement execution.

These are motor cells that hardly reach the threshold when a movement is generated in the

absence of visual input. Hence, during the motor condition, they emit very few spikes due

to random factors (i.e., noise) and usually they are in a sub–threshold state. A slight increase

in the inter-cortical weights determines that the visual signal is integrated together with the

local lateral excitation and the motor input and causes their constant firing. Note that in

order to fire, these neurons have to receive intra–lateral excitation, hence they are situated

inside the assembly currently involved in the execution of movement. Furthermore, because

the visual spikes trigger their activity the inter–cortical synapses of these units are signifi-

cantly increased. This leads to the fact that, eventually, the visual signals independently can

activate them.

Results show indeed, that these signals related to neurons firing at high rates during the

visually guided actions. By contrast, the motor neurons involved in the command of move-

ment spend much of their time in the refractory period. Hence, they have less chances to

synchronize with the arrival of the visual spikes and to increase significantly their inter–

cortical weights. Furthermore, it is not a coincidence that the signal related neurons are

placed in the center of a cell assembly, similarly to the way lateral neurons are situated.

That is, because only in such positions characterized by a strong surrounding excitation,

can these neurons accumulate enough stimulation to fire. In a reciprocal manner, the visual

related neurons send excitation to the other cells situated in the same neighborhood.

Based on these observations, we propose a hypothetical scenario for how visuomotor map-

ping of direction takes place in our model. In the first place, a percent of the motor neurons

are activated directly by the excitation coming from the visual neurons. Second, the visual

signals trigger activity in the visually–related motor neurons, which in turn spread activa-

tion in their neighborhood and determine the population to fire. Note that the visuomotor

neurons firing are placed inside the cell assembly, which we want to activate. This hypoth-

esis is consistent with the neurobiological findings describing the existence in the primary
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motor cortex of different types of units, including sensory–related, motor, and sensorimotor

neurons (Zhang et al., 2000; see also discussion in Section 7.1.3).

Further work will be aimed at exploring the means by which we can improve the visuo-

motor mapping accuracy. These preliminary results suggest that a correct alignment of the

two maps is favored by a large, distributed representation of directions, coded in the dis-

charge rates of neurons, rather than in the precise timing of the spikes. We believe that a

more accurate visuomotor mapping can be learned using a larger motor network, where

each direction of movement is multiply represented in the discharge rates of an extensive

population of neurons. We also aim to explore in more detail the role of visually–related

motor neurons in the formation of the motor response.

6.2.5 Discussion

In this section a computational model for the visuomotor mapping of directional informa-

tion was proposed. From our view, learning of the visual guidance of movement is a de-

velopmental process, which takes place by unsupervised means. Moreover, it occurs be-

tween two systems that have already developed specific capabilities for representing and

generating directional movements. To elicit an appropriate motor response, the directional

information must be transferred from the visually related areas to the arm-control areas. We

believe that the basic operation in this process is carried out through the correlated activ-

ity of directionally selective cells placed along the reach–related areas of the parieto–frontal

network.

Our model shows that the visuomotor transfer of coded information is supported by the

development of inter-cortical connection weights negatively correlated with the difference

between the preferred directions of the visual and motor neurons in a pair. This result con-

firms the estimation made by Salinas and Abbott (1994). Furthermore, we found out that

not all motor neurons in the map become responsive to the visual input. Those which do,

are represented mainly by neurons that are significantly tuned to directional information

(i.e., fire with high discharge rates) during the movement command. Besides the visuomo-

tor neural behavior, a type of signal-related neurons develop in the motor area, from those,

which were not very active during the generation of movement. These neurons may play

an important role in relaying information from the visual cortex to the motor areas (see also

Section 7.1.3).
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The idea of using the correlated activity of motion selective cells for visuomotor mapping

has already been modeled by Burnod et al. (1982), Salinas and Abbott (1995), and more re-

cently has been made the basis of a theoretical framework proposed by Burnod et al. (1999).

Compared to this earlier work, the merit of the current study is to have obtained an align-

ment of the motor to visual information in conditions of realistically implemented motor

coding of direction. In our scenario, by contrast with previous models, directional selec-

tivity and population coding emerge in the motor network, as a result of a developmental

process. Moreover, self–organization in our model occurs on networks of spiking neurons.

In this respect, the simulation work described in this chapter revealed interesting findings

on where directional information is coded. On the one hand, for the fast control of move-

ments, directional information might be read out, if necessary, from the timing of the first

spike of a subset of spontaneously activated neurons. On the other hand, the visuomotor

mapping accuracy depends on the way the directional information is coded in the motor

cortex. In this case, rate coding over a large population of neurons supports the correla-

tion of activity in the two networks and allows learning. More work is needed in future to

analysis in detail the synchronization of activity at the level of single spiking events.

Compared to the previous models of sensorimotor mapping based on the correlated fir-

ing of motion selective neurons our model has modest aims and attempts to address fewer

issues. We do not account for coordinate system transformation (see Salinas and Abbott,

1995) and our simulations are not effectively implemented for motor control (Bullock and

Grossberg, 1993). Rather, our model constitutes an illustration of how a complex problem,

such as the visuomotor mapping can be implemented in a very simple manner by two net-

works of directionally selective spiking neurons. This model argues for the importance of

the individual neurons low–level properties (i.e., as directional selectivity) in implementing

large–scale phenomena. Our hypothesis that the neural selectivity for stimulus attributes

lies at the foundation of visuomotor mapping is very similar to the theoretical concept of

combinatorial domains proposed by Burnod et al. (1999). We consider that our simulation

findings have computational relevance for the experimental framework developed by these

authors (see discussion in Section 7.1.4).

Moreover, the model proposed supports the thesis that gaze (i.e., eye) movement neural

activity can be re–used to control the movement of a limb. In our view, this means that

the directional gaze information becomes correlated, through a mechanism similar to the

one described here, with the arm movement activity, allowing the eye–hand coordination
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through a motor–to–motor program re–use (see Section 7.1.4). In the final chapter, the rel-

evance of our findings to the current theses of visuomotor development will be discussed

(Section 7.1.4, along with the possible applications of our models (Section 7.2).
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