
Chapter 5

SpikeNNS simulator: design and

implementation

The development in the last decade of a third generation of neural networks (Maass, 1997)

has required the design of dedicated simulation environments. Simulation platforms either

for the detailed modeling of individual neurons, such as Neuron (Hines and Carnevale,

1995) and Genesis (Bower and Beeman, 1998) or dedicated to large–scale neural simula-

tions, such as SpikeNet (Delorme et al., 1999), Infernet (Sougné, 1999), NSL (Weitzenfeld

et al., 1999) have been created in recent years. Due to the large attention given to realistic

modeling of the structure of biological neurons, the most powerful and flexible simulators

in existence today implement detailed neural models. As a result, these simulators become

more appropriate for the modeling of single neuron behavior and less suitable for large-scale

modeling of cognitive phenomena.

The aim of the modeling work presented in this thesis is to provide an example of how

cortical processes, such as movement planning or visuomotor mapping, are grounded in

the neural substrate. In Section 4.3 it was argued that a simplified neural model, such as

the Spike Response Model (SRM) (Gerstner, 1999) corresponds best to our modeling goals.

To date, SRM has been implemented only as part of simulations that are dedicated to spe-

cific tasks (Gerstner, 1999; Lerchner, 2001). Therefore, in the absence of a flexible simula-

tion platform that can be adapted to our modeling goals, the approach taken in this thesis

was to create a library of functions that model networks of SRM neurons. This library was

implemented as an extension of the general purpose–simulator Stuttgart Neural Network
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Simulator (SNNS) (Zell et al., 1992).

This chapter presents the implemented system, entitled SpikeNNS. We begin in Section 1

by describing the implementation of the neural model introduced in Chapter 4, Section ??.

When modeling large–scale networks of spiking neurons with plastic synapses, the time and

memory efficiency of the simulation became essential issues in the design of the simulator

(Jahnke et al., 1999; Mattia and Del Giudice, 2000). In the first section, we present several

versions of the neural model implementation, aimed at decreasing the computational work-

load per neural unit. Section 2 focuses upon how learning with networks of spiking neurons

is implemented. In this part, we deal with efficiency issues at the network level, partially

solved by implementing a discrete event–driven strategy. The issue of high neural activity

patterns is addressed, when spike events on the order of 105 are generated in the network.

Several strategies are proposed that lead to a highly efficient event–driven algorithm that

reduces the simulation time up to 20 times compared to the baseline algorithm. Finally,

Section 3 outlines the configurable features of the SpikeNNS simulator.

5.1 Implementation of SpikeNNS neural model

The neural model implemented in SpikeNNS is a simplified version of the Spike Response

Model (Gerstner 1999), described by the set of Equations 4.2, 4.3, and 4.5 (Section 4.3). This

section presents the effective implementation of the neural model and focuses upon the

time–efficiency of the simulation.

5.1.1 Design considerations

The implementation of a neural model requires consideration of several design issues. One

issue concerns the type of the synaptic connectivity employed. This falls into two cate-

gories: (1) the regular connectivity follows some deterministic rules, giving rise to patterns

such as receptive fields or topographical projections; (2) the non-regular connectivity consists

of sparse, probabilistic connections. In SpikeNNS both categories of connection patterns are

implemented. However, while regular connections are relatively simple to configure and

manage efficiently with respect to the time and memory load, sparse connections are more

difficult to deal with. The difficulty concerns both the generation of the probabilistic pattern

of synapses, and the efficient management of such a pattern (see Section 5.3.2).
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(a) Sender oriented scheme (b) Receiver oriented scheme

Figure 5.1: Data structures used to store the connections list. (a) A sender-oriented con-
nectivity stores the weights and addresses of the output connections Λi (b) In the receiver-
oriented scheme the weights and addresses of input links Γi are stored.

A commonly used method in representing the sparse connectivity pattern is to create a list

of connections, one for each neuron ni. Each item in the list contains the weight of the

connection and the address nj of the pair unit. If the address stored denotes the target

neuron nj to which ni sends spikes, then the scheme is called sender–oriented (Figure 5.1a).

When the list stores the addresses of the input nodes, that is, those neurons from which

ni receives spikes, the scheme is referred to as receiver–oriented (Figure 5.1b). Each of these

schemes demands different processing of spike generation and distribution.

In a receiver–oriented scheme it is the job of the receiver unit to handle the incoming spikes

and to set the transmission delays. Whenever a unit computes its activation it checks all

its input synapses to see whether a spike has been emitted on any of them. If this is the

case, then it sets the delay of the spike transmission (see lines 3-6 in Algorithm 1). It is

important that the algorithm ensures that the delay for each spike is computed only once.

Alternatively, in the sender-oriented scheme, the distribution of spikes and the generation

of synaptic delays are managed by the emitting neuron.

A number of simulators implementing the traditional rate–coding neural model use the

receiver-oriented scheme (i.e., SNNS). The reason for this is that scheme can be advanta-

geous in the case of a continuous neural output function, which causes constant firing ac-

tivity on synapses. However, this is not the case with spiking neurons activity. In Sections
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5.1.2 and 5.1.3 the appropriateness of each connectivity scheme for the implementation of

the spiking neural model is discussed.

Another design issue which has to be considered at the neural level is the method by which

the integration of the membrane potential is realized (Equation 4.2, Section 4.3). A straight-

forward way to compute the sum term in Equation 4.2 consists of the following. When-

ever an update of the unit activation is requested, the values of all previous postsynaptic

potentials coming from all presynaptic nodes are computed, integrated and added to the

refractory kernel. The optimization of this method is possible if we consider that the depo-

larization of the postsynaptic potential ε follows a deterministic function (see Equation 4.3).

Therefore, its value at time t can be expressed as a function of its previous value at t −∆t.

This idea is explored in Algorithm 3 in Section 5.1.3.

Besides considering how we integrate a neuron activity, we have to decide when we do this

integration. Solutions to this problem reside in using either a synchronous, time-driven

integration of unit activity or an asynchronous integration. Both strategies are implemented

and compared with respect to their efficiency for simulation of pulsed neural networks.

5.1.2 Activation and output functions - version 1

The first version of the Spike Response Model (Section 4.3) in SpikeNNS was created using

the SNNS receiver-oriented connectivity scheme. Equations 4.2, 4.3 and 4.5 have been im-

plemented within the body of two functions: the Activation function (ACT Spike) and the

Output function (OUT Spike). A straightforward (non-optimal) implementation of these

functions is shown in Algorithm 1. Note that the Output function could have been incor-

porated in the Activation function, but is kept separate to ensure compatibility with the

implementation of these functions in SNNS.

To get a quantitative measure of the complexity of the algorithms presented in this section,

we estimate the scaling of the number of operations required per algorithm, with the vari-

ables of the simulation process. The main variables are: T , the time of the simulation; N , the

number of neurons in the network; S, the synapses per neuron; Fj , the set of non-negligible

firing times on each synapse. Other variables that affect the number of the operations exe-

cuted will be introduced in the following subsections. Note that our measure NO is given

by the number of operations in the performance critical parts (i.e., such as loops) and does

not reflect the exact number of low-level operations required in the implementation. In the
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Algorithm 1 ACT Spike v1 -receiver oriented
Require: node i, current time t
Ensure: activation value Vi(t)

1: Vi(t) = 0
2: for all j ∈ Γi do {presynaptic nodes to i}
3: tlj = get spike(j) {receiver unit checks for new spike from this unit}
4: if tlj 6∈Fj then
5: dlj = noisy delay(length(wji)) {generate delay}
6: insert spike (tlj , Fj) {insert the spike in the set of firing times}
7: end if
8: for all tkj ∈ Fj do {all previous firing times of node j}
9: PSP kj (t) = ε(t− tkj − dkj ) {compute kth postsynaptic potential}

10: Vi(t) = Vi(t) + PSP kj (t) · wji { compute weighted sum of PSPs}
11: end for
12: end for
13: REF (t) = η(t− t(f)

i ) {calculate refractory period}
14: Vi(t) = Vi(t) −REF (t) {subtract REF from the PSPs aggregate}
15: if Vi(t) ≥ θ then {if the neuron fires}
16: t

(f)
i = t {record firing time}

17: end if
{No propagation of emitted spike is done by the sender unit}

Algorithm 2 OUT Spike
Require: activation Vi(t)
Ensure: output value Oi(t)

1: if Vi(t) ≥ θ then {the neuron fires}
2: Oi(t) = 1 {emit a signal, set output to 1}
3: else
4: Oi(t) = 0 {no signal}
5: end if

case of Algorithm 1, the critical computational effort is represented by the computation of

the ε kernel (i.e., given by an exponential function) for Fj times, for each input synapse in S

(lines 8-11). This entails NO ≈ S · |Fj |. In addition, checking the firing activity of each input

synapse (lines 3-7, Algorithm 1) needs a supplementary effort that scales with S. Then, the

estimated number of operations for Algorithm 1 is:

NO1 ≈ S · (|Fj |+ 1). (5.1)
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5.1.3 Acceleration of the activation function - version 2

Let us now consider the sender-oriented connectivity scheme. In Algorithm 1, the receiver

unit checks the activity of all incoming synapses at each integration step (lines 2-7). By con-

trast, in a sender–oriented strategy there is no need for this additional operation. Whenever

a spike is generated, it becomes the task of the emitting unit (or of the main simulation en-

gine) to compute the propagation delays for all output synapses. Because the propagation is

performed only once for each spike, the uniqueness of the delay value per spike is ensured.

The sender–oriented scheme is implemented in Algorithm 3.

Algorithm 3 ACT Spike v2 - sender oriented
Require: node i, current time t, previous integration time tint and previous weighted sum

PSPi(tint)
Ensure: activation value Vi(t)

1: x = t− tint {elapsed time from last integration}
2: PSPi(t) = PSPi(tint) · exp(−x/τm) {decay the sum of past PSPs}
3: for all wkji with tkj > tint do {only spikes that occurred since last integration}
4: PSP kj (t) = ε(t− tkj − dkj )
5: PSPi(t) = PSPi(t) + PSP kj (t) · wjj {add new weighted PSP to the sum}
6: end for
7: Vi(t) = PSPi(t) {set the voltage to the aggregate of inputs}
8: REF (t) = η(t− t(f)

i ) {compute refractory period}
9: Vi(t) = Vi(t) + REF (t) {subtract refractoriness }

10: if Vi(t) ≥ θ then {if the neuron fires}
11: t

(f)
i = t {record firing time}

12: end if
{Note that propagation of spikes is handled by the main simulation engine (lines 14-17
in Algorithm 4)}

Algorithm 1 can be further improved through the judicious choice of the method used to

integrate the membrane potential. The new version of the algorithm exploits the fact that

between any two firing moments, a neuron depolarization has a deterministic evolution.

Rather than computing the sum over all the postsynaptic potentials at each time step, the

contribution of the previous spikes effects on the node i is stored and it is decayed every time

when a new potential has to be added. Thus, at the current time moment t the previous sum

computed at time tint is decayed by the formula PSPi(t) = PSPi(tint) · exp[−(t− tint)/τm],

where τm is the time membrane constant (line 2 in Algorithm 3).

Apart from decreasing the simulation time this method has the advantage of minimizing

the memory load. Thus, for the receiver–oriented scheme the transmission delays dkj of
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all spikes in Fj emitted on each synapse j in the network have to be stored. For instance,

in the case of a network with 1k units and 10% connectivity, where the last 10 spikes are

stored for each synapse, the additional memory load is on the order of 105 floats. Instead, in

the sender-oriented scheme only two values are kept within each neuron structure: the last

integration moment tint and the corresponding decayed sum PSPi(tint).

As a result of the optimizations implemented, the computational effort of the Algorithm 1

is reduced in Algorithm 3 at NO ≈ aS · bFj , where a and b are two variables which range

between 0 and 1. The term bFj represents the number of spikes released on a single synapse

between two integration moments. The value of the parameter b depends on the time reso-

lution of the simulation. By considering an algorithm that increments simulation time in fine

clock steps (e.g., 1 ms) (see Section 5.2.1) or which integrates the neuron’s activity for each

new spike received on a synapse (see Section 5.2.1) than bFj is 1. This means that no more

than one new spike per synapse has to be processed at any call of the activation function.

The term aS represents the percent of synapses on which new spikes are emitted between

two integration moments. Hence, the estimated number of operations for computing a sin-

gle unit in a time bin reduces to

NO2 ≈ aS. (5.2)

with a a variable dependent on the network activity. The differences in performance be-

tween the two versions of the Activation function (Algorithm 1 vs. 3) becomes more obvious

when these algorithms are employed for the integration of a large number of units over a

long time interval (see Section 5.2.1).

The algorithms presented above illustrate in turn, how receiver– and sender–oriented schemes

may be implemented separately. However, by using the SNNS libraries, it has been possi-

ble to construct a mixture of these algorithms that uses both sets of data structures. This

is, because SNNS implements a receiver-oriented scheme, to which we added, rather than

replacing (i.e., for compatibility reasons the default connectivity could not be deleted) struc-

tures for the sender–oriented connections.

By doing this, we found that the most time efficient method for integrating spikes may be a

composite version of the two algorithms. That is, during a first time period when the input

patterns are applied, values associated with these spikes are stored in the input synapses,

using the receiver–oriented structures. These spikes are integrated only once at an arbitrary

time moment Tint, by using the first algorithm (see description of time coded input patterns
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in Section 4.3.4). After first integration is done at Tint, further spikes are integrated one at

a time, using the second algorithm. The advantage of using the first algorithm to store and

process the values of the input patterns spikes, is that it avoids the generation and handling

of a spike event for each firing of an input unit. In this way it is possible to significantly

reduce the number of events the algorithm has to deal with. Nevertheless, this is not a

portable solution, because it makes use of two lists of connections that can introduces a

significant memory load. For spiking neuron simulations the sender-oriented connectivity

is the best choice from the two schemes.

What remains to be explained for Algorithm 3 is how it computes the values of the incoming

postsynaptic potentials (lines 3 and 4). This is because, by implementing a sender–oriented

connectivity solely, a unit does not have access to the values of the input synapses (i.e., the

weights and spikes delays). Consequently, it does not know how to calculate the postsynap-

tic potentials. A possible solution is to parse the output connection structures of all units in

the network to find a neuron input synapses. However, this is an exhaustive, time consum-

ing solution. An alternative is to create a data structure for each spike emitted on a synapse

that stores the necessary values: the addresses of the emitting and target units ni, nj , the

firing presynaptic time tkj , the transmission delay dkj and the synaptic weight wji. This so-

lution, of a spike-oriented nature, in contrast with the synapse-oriented scheme, leads us

naturally into an event-driven approach to the simulation (see Section 5.2.1 below). The

complete description of how these spikes are created and delivered is given in Section 5.2.2.

5.2 Simulation of networks of spiking neurons

Up to this point, we focussed upon the simulation of one time step of neural behavior. This

consists of computing the neuron’s membrane potential by integrating the effects of the

incoming spikes (i.e., the postsynaptic potentials) with the effect of the neuron’s own spikes

(i.e., the refractoriness). In this section, we address the issue of information processing and

learning within a network of spiking neurons during a certain time interval.

An essential implementation aspect in building discrete simulations concerns the way the

simulation time is progressed. Performing a simulation means to mimic the occurrence of

events (i.e., spikes) as they evolve in time and recognizing their effects as represented by

states (i.e., network activity) (Ferscha and Tripathi, 1994). The simulation of one basic time

step for a whole network is called a time slice (Jahnke et al., 1995). Most commonly each time
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slice involves four operations:

• Activity propagation. Spikes from input or hidden units are propagated through the

hidden layers of the network.

• Integration. Each unit in the network calls the Activation function and integrates its

inputs.

• Output. If a unit fires, the spike time is recorded and the signal is managed according

with the implemented strategy (see Sections 5.1.2, 5.1.3).

• Learning. Adaptation of the synaptic weights can follow each pattern application or

wait until all input patterns are applied. Information concerning learning (e.g., spikes

timings, frequency of spiking) may be recorded for each time slice.

In this section, we present a number of algorithms for the simulation during a time period

T , of the four operations described above. The first three of them, namely the activity propa-

gation, the integration and the output are implemented in the function PROPAGATE Spike.

Learning is applied after a time coded pattern is presented to the network and the activity is

propagated through the hidden layers for a certain time interval. A general training frame-

work is described in the LEARN Spike function. Note that when computing with spiking

neurons, a single time coded pattern actually consists of a set of input signals, each applied

as a distinct sub-pattern at a certain time moment (see description of input patterns applica-

tion in Section 4.3.4). Hence, we bear in mind that the PROPAGATE Spike function applies

only a time coded pattern, consisting of several sub-patterns, while the entire training set is

learned using the LEARN Spike function.

5.2.1 Continuous vs. event–driven protocols

Currently, two kinds of discrete simulation are distinguished with respect to the way simu-

lation time is progressed: time driven simulation and event driven simulation. In a time driven

simulation, time is advanced in steps of a constant size ∆t (Ferscha and Tripathi, 1994). The

choice of ∆t influences the simulation accuracy. That is, ticks short enough to guarantee the

required precision generally imply longer time simulation. The continuous, time–driven

protocol appears to be the de facto standard for detailed neural modeling (Bower and Bee-

man, 1998). This is because, it ensures the time resolution needed for the integration of the

differential equations describing the model.
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On the other hand, large–scale simulations that involve learning in plastic synapses and long

training procedures are faced with important time and memory efficiency issues. These are

usually tackled through the use of simplified neural models and event–driven strategies

(Watts, 1994; Mattia and Del Giudice, 2000; Claverol et al., 2002). Efforts have also been

made to implement simulations on parallel computers (Fujimoto et al., 1992; Brettle and

Niebur, 1994; Jahnke et al., 1995) or to create dedicated hardware (Schoenauer et al., 1998;

Elias and Northmore, 1999).

Continuous time algorithm

A straightforward implementation of a continuous–time algorithm for the simulation of the

network activity during a training step is presented in Algorithm 4.

Algorithm 4 PROPAGATE Spike - time driven
Require: current pattern number p, simulation time st, time out tout

1: ct = st {set the time clock}
2: while ct < tout do {while current time less than time out}
3: for all l ∈ Input(p) do {all input units}
4: if l(ct) = 1 then {if there is an input value at the current moment}
5: outl = OUT Identity(l(ct)) {send a pulse}
6: for all i ∈ Λl do {output synapses to hidden nodes}
7: dli = noisy delay(input delay) {set delay for input spike from l to i}
8: end for
9: end if

10: end for
11: for all i ∈ Net do
12: acti = ACT Spike(i, ct) {call activation function}
13: outi = OUT Spike (acti)
14: if outi then {propagate spike to postsynaptic nodes}
15: for all k ∈ Λi do {all postsynaptic nodes to i}
16: dki = noisy delay(length(wik)) {compute spike delay}
17: end for
18: insert(i, LearningNodes) {synapses of firing units are subject to learning}
19: end if
20: end for
21: ct+ = ∆t {increment the current time contor}
22: end while

Let us consider the computational effort demanded by the execution of the Algorithm 4,

when the activation functions described in Section 5.1 are used in turn (in line 12). Thus, by

using the first version of the activity function from Algorithm 1, to compute a network with
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N neurons, S synapses per neuron, during a time interval T with a time step ∆t, a number

of operations are required:

NO3 ≈
T

∆t
·N · S · (|Fj |+ a)). (5.3)

The first term in the sum accounts for the computational effort needed to integrate the ac-

tivities of all units (lines 11-13, Algorithm 4). The second term estimates the operations

required for the distribution of spikes that occur in a time slice, at a network activity a (lines

14-17, Algorithm 4). The value of a is defined as the average number of spikes in a time slice

divided by the number of neurons and takes values in the range of [0, 1]. When using the

second version of the activity function (Algorithm 3), both computational complexities scale

with the network activity a. The number of operations reduces to:

NO4 ≈
T

∆t
· a ·N · S · 2. (5.4)

These two estimations of the number of operations, neglect the computational effort re-

quired for the distribution of the input spikes (lines 3-10, Algorithm 4). This is mainly be-

cause, input units have an identity activation function that does not require the computation

of a response kernel and the total number of input patterns is small compared to the number

of times the network activity during a training step.

The number of operations implemented by Algorithm 4 is higher when using the first ver-

sion of the activation function. This is, because at each time step, the activity of every unit is

updated by computing the ε values for all presynaptic firing times in |Fj | ≈ 10. Conversely,

the second version of the algorithm decreases the number of operations, by reducing the

computational effort per neuron to the integration of one spike from each active synapse aS

in the network.

Both implementations of Algorithm 4 operate in a synchronous way. They integrate all

neurons N at each time step T/∆t that determines their poor scaling with the network size

and the simulation time. Moreover, the global integration of the network activity may not be

necessary, due to the fact that at each time moment only a small number of neurons receive

a new spike. An observation can be made here, with respect to the differences between the

simulation of spiking neurons and rate–coding neurons. Learning based on a continuous

neural model makes use of the integration of network activity at each time step. This is

because, the output synapses are constantly active due to the continuous output function

of the neurons. By contrast, the output of spiking neurons are discrete, rare events, whose

transmission is affected by axonal latencies and which reach the target units at certain time
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moments. A simulation which discretizes the computation of unit states (e.g, activities) at

spike-event occurrences seems more appropriate for a pulsed neural network simulation.

Event driven algorithm

An alternative to time driven simulation is to implement an event driven strategy (Ferscha

and Tripathi, 1994). Instead of advancing the simulation time in a continuous way and

processing events synchronously at each clock tick, the integration of a unit activity can be

performed in an asynchronous way, triggered by the reception of one or several spike-events

(Watts, 1994; Grassmann and Anlauf, 1998; Mattia and Del Giudice, 2000). In this section we

describe Algorithm 5 that implements a basic event-driven strategy for the computation of

the network activity during a training step.

Algorithm 5 PROPAGATE Spike - event driven
Require: current pattern number p, simulation time st, time out tout

1: ct = st {set the time clock}
2: SL = nul {init spike list}
3: while ct < tout do {while current time less than time out}
4: if SL = nul ∨ ct ≥ time(next subpattern(p)) then
5: apply inputs (next subpattern(p)) {call lines 3-10 Algorithm 4}
6: end if
7: e = first event(SL)
8: ct = e.time {simulation time becomes the time of the current spike }
9: if not nul event(e) then

10: i = e.target {get the spike’s target unit}
11: acti = ACT Spike(i, ct) {integrate activation for target unit i}
12: outi = OUT Spike(acti)
13: SL = remove first event(e, SL) {delete event e from the list}
14: if outi then {propagate spike to postsynaptic nodes}
15: for all k ∈ Λi do {all postsynaptic nodes to i}
16: dki = noisy delay(length(wik))
17: e = create spike event(k, ct+ dki )
18: SL = insert event order(e, SL)
19: end for
20: insert(i, LearningNodes) {synapses of firing units are subject to learning}
21: end if
22: end if
23: end while

The core of Algorithm 5 consists in processing spiking events from a chronologically ordered

list SL (lines 7- 13). Whenever a unit fires a spike, a new event e is created and inserted
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in order in the spike list SL (lines 17-18). Each new spike is fully characterized by a time

stamp representing the delivery moment and the index of the target unit. The input patterns

are applied when the event list becomes empty or when the current time of the simulation

exceeds next sub-pattern time stamp (lines 4-5).

The simulation engine of the event–driven algorithm is presented in Figure 5.2. It continu-

ously takes the first event from the event list (i.e., the one with the lowest timestamp) and

delivers it to the target unit. This process continues until a time out moment is reached

or no further events have occurred. The most important task of the event-driven engine is

to allow an asynchronous processing of the events, while preserving the time order of the

events. Doing this, makes the parallelization of the simulation possible, because it permits

events to be processed by different processors, while the time order is ensured (Mohraz et

al., 1997; Jahnke et al., 1999). The most common procedure for achieving this goal is to main-

tain a global ordered list of events and whenever a new spike is generated, it is inserted in

order in the list. Alternative methods have been proposed, mainly by creating and updating

several lists instead of one, in order to reduce the excessive increase of a global list length

(Mattia and Del Giudice, 1999; Claverol et al., 2002). In Section 5.2.2 it is presented our

solution to this problem.

Evaluation of performances

The event-driven algorithm presented above leads to a significant decrease in the number

of operations required computing the network activity during a training cycle. By using the

efficient version of the activation function ACT Spike2 in Algorithm 5, the simulation of the

network activity in a time period T requires a number of operations:

NO5 ≈
T

σt
· a ·N · S · (a+ 1 + log(length(SL))) (5.5)

Here, σt represents the time resolution used in the generation of noisy delays and input

signals (i.e., note that is different from ∆t step). The first term represents the computational

effort employed by the integration of all units that receive spikes at a certain moment of

the simulation (lines 7-12, Algorithm 5). Note that it scales with a2. Second term is the

computational effort for the spike distribution (lines 14-17, Algorithm 5). Compared to the

previous versions, this algorithm brings an additional computational effort required by the

insertion in order of the new spikes in the event list (line 18, Algorithm 5). The length of the

list scales with T/σt · a ·N · S.
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Figure 5.2: Event-driven simulation engine. At t1 the spike list SL contains events sorted in
a chronological order. The engine takes the first spike in the list (i.e., the oldest) and delivers
it to the target unit. This integrates its activity and possibly, emits a spike. The emitting unit
computes the delays and creates the corresponding spike structures that are further inserted
in order in SL. The process is repeated at time t2 with the new configuration of the spike
list.

One can see that compared with Algorithm 4 (Eq 5.4) the number of operations on Algo-

rithm 5 is reduced by two factors. First, in each time bin only a percent a of the total number

of units in the network are computed. This causes a decrease in the number of operations

in the performance critical part that concerns the integration of units activities, by a factor

of a2. Second, the occurrence of the integration time instants is not fixed to a time clock,

but is given by the time resolution σt and the network activity a. The number of operations

in Equation 5.5 can be further decreased in two ways. Firstly, by decreasing the percent of

spikes which are computed in a time slice and secondly, by increasing the σt value. Both

issues are discussed in Section 5.2.2.

In order to compare the performance of the event-driven and time-driven policy, the Al-

gorithms 4 and 5 have been implemented to train a pulsed self-organizing network with

plastic lateral synapses. Note that, in the remainder of this chapter, the continuous time Al-

gorithm 4 implemented with the activation function ACT Spike1 will be used as the basic-

line measure. The network architecture and the learning procedure are described in detail in

Section 6.1. In a nutshell, the organization process consists in the training a self-organizing
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Figure 5.3: Computational times per training cycle for the event and time driven algorithms,
for two network sizes N = 256, 576 units.

feature map of spiking neurons with a Mexican–Hat shape of lateral connectivity, to encode

12 directions of movement. Two networks have been used, of dimensions N = 256 and

N = 576 units. The size of the test maps was limited by the low dimension of the set of

input patterns (i.e., 12x20 patterns) which would cause the failure of the self-organization

process in larger maps (see Section 6.1).

In a self–organization process, the lateral feedback system is used as a basic mechanism

to modify over time the form of the emergent activity pattern. Given an untrained map,

the neural activity starts out spreading over a large part of the network. That is in our

case, up to 30%-50% of the network. In a few hundred iterations of the learning procedure,

the network response to one stimulus converges to a stable activity bubble that includes

a relatively small set of firing units. It becomes evident that an event-driven algorithm

can benefit from the localization of the network activity, by updating units only within the

active area. In contrast, a continuous time procedure computes the entire network activity

in a time-stepped fashion.

Figure 5.3 shows the computational times per training cycle when the Algorithms 4 and

5 are used for the task described above. Results illustrate the good scaling of the event-

driven algorithm with the simulation time, when the level of activity in the network (i.e.,

a value) decreases. In opposite, the time spent in the synchronous simulation (first two

graphics in Figure 5.3) scales poorly with the reduction in the network activity, but it is

strongly correlated with the network dimension. The scaling of event-driven algorithm is
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Figure 5.4: Scaling of the event-driven algorithm with the change in the network activity.
Computational times per cycle are presented for first 1000 training steps, when activity de-
creases from 100 HZ (on first 100 steps) to 33 Hz at the end.

better illustrated with Figure 5.4. Note that the network activity decreases from 100 Hz on

the first 100 cycles to 30 Hz after 1000 cycles.

These results suggest that the event-driven algorithm represents for a self-organization pro-

cess with spiking neurons, a more efficient simulation framework than the time-driven ap-

proach. Time-efficiency represents a crucial issue in the simulation of self-organizing net-

works. That is, because the mapping accuracy of a Kohonen network depends upon the

dimension of the training sample and the number of learning steps performed (Kohonen,

1995). Similarly, the simulation time of a pulsed SOM can increase significantly, unless time-

efficient strategies are employed.

5.2.2 Optimization of the event–driven algorithm

On Figure 5.3 (left upper side) one notes that the event-driven algorithm applied to the

training of the larger network (N= 576 units) performs more poorly than the continuous ap-

proach. This behavior is recorded during the first hundred learning cycles when the network

exhibits neural activity with frequency up to 100 Hz. The inefficiency of the event-driven

approach in the conditions of high neural activity arises from a poor management of the

spike–event list. The main factor is represented by the insertion operation that scales with

the number of events in the list. The observation about the limitations of the event-driven

strategy is consistent with those of other authors (Schoenauer et al., 1998; Mattia and Del
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Giudice, 2000). They have suggested that an event-driven simulation is suitable only for

spiking neural networks with low activity. Most generally, the real neurons fire at low fre-

quencies, however it is also common that they exhibit bursts of spikes with a high frequency

of oscillation (Kandel et al., 2000). Therefore, we need to be able to simulate this type of neu-

ral behavior, without a tremendous increase of the simulation time. This section proposes

an event-driven algorithm that scales well with the increase in the network activity.

In this section, two mechanisms are proposed for the efficient simulation of networks that

exhibit activity patterns with high frequencies. Both of them address the most time-expensive

process in the event-driven policy, namely the management of the event list.

Multiple spikes. A straightforward implementation of an asynchronous algorithm gener-

ates for aN firing neurons with S synapses per neuron a maximum number of aN ·S action

potentials in each time slice (Equation 5.5). Our idea was that, instead of creating a distinct

event for each spike, to accumulate in a single structure all presynaptic spikes that would

reach the target unit at the same time moment and to deliver them together. We define

the concept of a multiple spike, which is a data structure that stores in a list, all synaptic

weights m that deliver a spike to a certain neuron i at the time moment t. A similar concept

was previously formulated by Schoenauer et al. (1998) and defined as weight caching.

By implementing the multiple spike concept, the overall computational load per time slice

reduces by 1/m. This means that we have fewer spikes to integrate less to distribute and

less to insert in the spike list. In the most favorable scenario, m can equal S. Consequently,

the time of the simulation scales well with the increase in the network activity. On the worst

case, m can represent just a low percentage from S. In this case, the method does not bring

a significant improvement on the time performance of the algorithm. The main parameters

which affect the value of m are: the topology of local connections and the time resolution

used in the generation of input signals and delay values σt. A possible trade-off might be to

use a large time resolution (e.g., σt = 1 ms). This will increase the probability of spikes to be

delivered at the same time, hence it will favor their aggregation in multiple spikes and will

decrease the length of the event list.

The ordered-insertion problem. The use of multiple spikes for the aggregation of pulses to

be delivered at the same time to a target unit is aimed at reducing the length of the event

list. However, there are cases when trying to aggregate spikes does not make any difference

and there is no significant reduction of the length of the list. This faces us with the problem

of how large dynamic data structures can be managed efficiently. It was mentioned above,
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that the most expensive operation in the management of the event structure is represented

by the ordered insertion (line 18 in Algorithm 5). That is, because the complexity of this

operation scales with the length of the list. As the list grows (i.e., in the range of 105 events

for a frequency of 100 Hz), so does the search time required by the ordered insertion. A basic

improvement, which results in speeding the simulation up to four times, can be achieved if

the list is searched selectively from the start or from the end, depending on the new spike

time stamp.

Several implementations of event-driven strategies for the simulation of pulsed neural net-

works have been developed in recent years (Watts, 1994; Mattia and Del Giudice, 2000;

Claverol et al., 2002; Delorme and Thorpe, in press). Perhaps one of the most efficient (and

ingenious) solutions for the management of the event structure was proposed in Mattia and

Del Giudice (2000). Authors suggested the use of not only one event list, but of several FIFO

queues, each of them associated to a fixed axonal delay value. The neural model accounts for

the existence of a discrete set D of ordered delays for spike transmission (e.g., a maximum

number of 16 delays have been implemented). Synapses of the neurons in the network are

organized in matrix-structured layers, each layer corresponding to one delay value. When

an event is generated it is not inserted in a single global list, but it is directed to the synaptic

queue corresponding to its transmission delay. Because in the same queue all spikes share

the same transmission delay, the spike generated first will be the oldest (top of the queue)

and the latest generated spike will be the last in the queue (end of the queue). Accordingly,

the data structure needs no sorting operation and the insertion is done in O(1) complexity.

However, the picture is completely different when a neural model accounts for noisy delays.

That is, because a recently generated spike with an associated high transmission delay must

be delivered to the target unit later than an older spike that has a short synaptic delay. In

this case, the time stamp of an event is dependent on both the spike time and the noisy

delay. The algorithm proposed by Mattia and Del Giudice (2000) has a very low complexity

when used for learning with plastic synapses and theoretically, the solution suggested is

very ingenious and highly efficient. Its drawback is that it employs a crucial simplification

of the neural model, consisting in the limitation of the synaptic delay to a fixed number of

values.

Formal neural models apply several simplifications to the detailed structure of the biological

neuron (see Section 4.2.1), but noise in the synaptic transmission is preserved by almost all

simplified models (Gerstner, 1999; Mass, 1999). This is, because noisy delays are an essential
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factor in the optimal tuning of the neural response to the stimulus attributes, hence they

play a crucial role in the development of neural selectivity and in the self-organization of the

cortex (see Section 6.1). We consider that keeping the noisy delays is a must for a simplified

neural model and the solution proposed in Mattia and Del Giudice is acceptable only for a

limited set of applications, where noisiness can be discarded.

Quick sorting of an unordered pool. Our solution to an efficient management of the spike

list structure consists in eliminating the insertion overhead. Instead of performing the or-

dered insertion, we just add the spike to an unordered pool of spikes, an operation of com-

plexity O(1). Since the events have to be processed in chronological order, at constant time

intervals, the simulation engine stops processing spikes, and selects from the pool and sorts

chronologically, those events which will be computed in the next interval. The time window

during which processing of events takes place continuously is referred to as Twindow. It is

similar to the safe window concept used in parallel simulations to guarantee the temporal

correctness of the algorithm (Ferscha and Tripathi, 1994). Figure 5.5 shows the simulation

engine of the algorithm.

The selection of spikes to be processed in the next time window is performed using a quick

sort algorithm. Most importantly, the sorting algorithm is run only over a small percentage q

from the elements in the pool, namely those whose time mark is within the next processing

interval (see Figure 5.5). This is realized by setting the first pivot point of the quick sort

procedure to t + Twindow. By doing this, after the first iteration of the algorithm the pool is

”shuffled” and only the elements with a time stamp less than t+Twindow are sorted (lines 23-

27 in Algorithm 6). As a consequence, instead of dealing with the total number of insertion

operations proportional to

NO6 ≈
T

σt
· a ·N · S · log(

T

σt
· a ·N · S) (5.6)

we have an insertion operation of complexity O(1) and an additional computational effort

to sort the pool given by

NO7 ≈
T

Twindow
· q ·Np · log(q ·Np). (5.7)

where Np is the number of spikes in the pool. The value of the interval Twindow is choose

by considering two aspects. On one hand, the value of this variable is set so that it ensures

a correct chronological processing of the spike-events from the pool. To obtain this, each

processing interval cannot be larger than the minimum synaptic transmission delay. As the

value Twindow grows, so does the risk of integrating more recent spikes before older ones.
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Figure 5.5: The event-driven simulation engine based on the quick-sort strategy of an un-
ordered pool. Whenever the spike list SL becomes null, that is, when all spikes in the current
time window Twindow have been processed, the quick-sort algorithm is run. Note that it is
run only upon a fraction of the elements in the spikes pool, namely those with a time stamp
between the current time t and t+Twindow. Sorted spikes are stored in SL and are processed
by the simulation engine (i.e., integration, propagation, output). Any new spikes generated
are simply added at the end of the pool.

On the other hand, too fine a value of Twindow increases the chances that the sort algorithm

will fail. That is, if the sorting interval is too small, the algorithm does not find not even

a single event or it returns a very small number of events with time stamps within this

interval (see lines 23-27 in Algorithm 6). Moreover, a large time window is desirable be-

cause it decreases the number of times when sorting is required. The implementation of

the quick-sorting strategy and of the multiple spike concept, give the final version of the

PROPAGATE Spike function in Algorithm 6.

The implementation of Algorithm 6 for the simulation of a number of cognitive models

indicates that it represents an efficient solution for networks with high frequencies of neural

activity and when the synaptic delays have equally distributed values. In our simulations

(Sections 6.1, 6.2), the Twindow interval was set to 2 ms and σt to 0.1 ms. This means that
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Algorithm 6 PROPAGATE Spike - quick sorting strategy
Require: current pattern number p, simulation time st, time out tout

1: ct = st {set the time clock}
2: PL = nul, SL = head(PL) {SL points to the head of the spike pool}
3: while ct < tout do {while current time less than time out}
4: if SL = nul ∨ ct ≥ time(next subpattern(p)) then
5: apply inputs (next subpattern(p)) {call lines 3-10 Algorithm 4}
6: end if
7: e = first event(SL)
8: ct = e.time {simulation time becomes the time of the current spike }
9: if not nul event(e) then

10: i = e.target {get the spike’s target unit}
11: acti = ACT Spike(i, ct) {integrate activation of unit i}
12: outi = OUT Spike(acti)
13: SL = remove first event(e, SL)
14: if outi then {propagate spike to postsynaptic nodes}
15: for all k ∈ Λi do {all nodes postsynaptic to i}
16: dki = noisy delay(length(wik))
17: em = multiple spike(k, ct+ dki ) {create or update a multiple spike}
18: PL = add event pool(em, PL)
19: end for
20: insert (i, LearningNodes) {synapses of firing units are subject to learning}
21: end if
22: else if PL 6= nil then {if SL is nul and spike pool PL is not empty}
23: Tpivot = ct+ Twindow {get the next processing window}
24: PL [center] = Tpivot {set the first pivot point for quick sorting}
25: while SL = nul ∧ Twindow < time out do
26: SL = sort pool(PL, Tpivot) {sort spikes with time less than Tpivot}
27: Tpivot = ct+ Twindow {increase the window}
28: end while
29: end if
30: end while

the insertion operation complexity in Equation 5.6 is 20 times higher in comparison with the

sorting effort from Equation 5.7. Moreover, the value of the percent p is given by the number

of spikes to be sorted within a 2 ms interval, hence it is low compared to the total number of

spikes in the pool. Together, these factors make the sorting computational effort to remain

low and almost independent of the pool size, Np.

Moreover, we can complete now the implementation of the activation function ACT Spike2

(Section 5.1.3) by specifying the way a neuron integrates the presynaptic spikes. It was

pointed out there, that without a receiver-oriented connectivity each spike must store the

complete information needed for the computation of the weighted postsynaptic potentials
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by the target unit. In the event-driven Algorithm 6, the Activation function is called when-

ever a neuron receives a multiple spike. At that very moment, when the spike reaches the

unit, the postsynaptic potential (PSP ) is set to the maximum value (e.g., 1 in SpikeNNS).

Therefore, no other computations are needed, excepting to multiply the PSP by the connec-

tion weight, which is stored in the multiple spike structure.

With these clarifications, lines 3− 6 in function ACT Spike2 become:

1: for all wkji ∈MultipleSpikeStructure do

2: PSP k(t) = 1

3: dPSPi(t) + = PSP k(t) · wkij
4: end for

Evaluation

We conclude the description of the event-driven algorithm with the evaluation of its time-

efficiency. First, we want to illustrate the gradual improvement in the performance of a

basic event-driven implementation when each of the above methods is incorporated. We

compare the version presented in Algorithm 4 with three improved algorithms: (1) the im-

plementation of multiple-spikes at a time resolution σt = 0.1ms; (2) multiple-spikes at time

resolution σt = 1ms; and (3) the quick-sort algorithm with multiple-spikes at σt = 0.1ms

(i.e., Algorithm 6). The performances of the algorithms were compared with respect to how

well each of them realize the management of the spike-events structure. Our measure of

the computational effort is defined by the time required to compute (e.g., integrate activi-

ties, output spikes, propagate pulses and handle the spike-list structure) a certain number

of units, in this case Nk = 1000 units.

The findings presented in Figure 5.6 reveal a gradual increase in the algorithm performance

of up to 20 times when the above strategies are added one by one to the basic event-driven

implementation. Note that if the multiple spike strategy is applied to a series of events

generated with a fine time resolution (i.e., 0.1 ms) the probability of spikes to accumulate

is low. Consequently, it leads to an average improvement in performance by 30%. Only

when the time resolution is increased to 1 ms does the method prove really efficient. The

best performing algorithm consists of a combination of multiple spike strategy and quick-

sorting of the unordered pool. It shows an almost linear scaling with the increase in the

network activity and most importantly, this is obtained at a time resolution of 0.1 ms. The
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Figure 5.6: Computation times for updating 1000 units vs. levels of network activity, when
different event handling methods are applied. The network activity is measured as the
average number of spikes in one ms divided by the total number of neurons for N=576.

complexity of Algorithm 6 is shown in Table 5.1.

In the second part of the evaluation, we intend to compare the time performance of Algo-

rithm 6 with the times reported in Mattia and Del Giudice (2000) (i.e., further referred in the

text as the layered-delay algorithm). This comparison is facilitated by the fact that both al-

gorithms have been applied to spike-driven learning processes of similar complexities. The

quick-sorting strategy has been implemented to apply learning in a self-organization fea-

ture map of spiking neurons, with plastic excitatory and inhibitory lateral synapses (see the

description of the learning procedure in Section 6.1). The learning procedure was run only

for a small number of cycles while the network activity was high (i.e., 100 Hz).

Results reported for the layered-delay algorithm are the time per neuron needed to complete

the simulation of one second of neural time in networks with different sizes (i.e., up to

15k units). The algorithm is applied for learning with integrate-and-fire neurons, when

the spiking frequencies are maintained constant. Thus, the excitatory neurons frequency is

Fe = 2 Hz and inhibitory neurons frequency Fi = 4 Hz. The connectivity rate, when the

network size is varied, represents a constant percent 10% from the total number of units.

To obtain a similar measure of the computational effort required to integrate one neuron

activity in our algorithm we proceed as follows. First, we calculate the number of neurons
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(1) Continuous time v1. NO ≈ T
∆t ·N · S · (|Fj |+ a), with a ∈ [0, 1]

(2) Continuous time v2 NO ≈ T
∆t ·N · S · a · 2

(3) Event driven - basic NO ≈ T
σt ·N · S · a · (a+ 1 + log( Tσt ·N · S · a))

(4) Event driven - optimal NO ≈ T
σt ·N ·

S
m · a · (a+ 1) + T

Twindow
· q ·Np · log(q ·Np))

with m ∈ [1, S], q ∈ [0.05, 0.25] and Np = T
σt ·N ·

S
m · a

Table 5.1: Computational effort for four algorithms, estimated by the number of operations
required in the implementation of the performance critical parts: (1) continuous time al-
gorithm (Algorithm 4, Section 5.2.1) with activation function version 1 (Algorithm 1, Sec-
tion 5.1.2); (2) continuous time algorithm (Algorithm 4) with improved activation function
version 2 (Algorithm 3, Section 5.1.3); (3) basic event-driven algorithm (Algorithm 5, Sec-
tion 5.2.1); (4) time-efficient version of the event driven algorithm, with multiple spikes and
quick-sorting of the pool (Algorithm 6, Section 5.2.2).

which fire during 1s of simulated time. This is given by Nf = Ne ·Fe +Ni ·Fi, where Ne, Ni

are the number of excitatory, and respectively inhibitory neurons, in a network of a given

size. Next, we run the Algorithm 6 on a set of networks with similar sizes and connectivities

as the one tested in Mattia and Del Giudice (2000). During training of these networks, we

compute the time per neuron required for the simulation of all operations entailed by the

firing of same number of neurons, Nf . The reason for this measure of evaluation is that the

two algorithms run on networks that show activities with significantly different frequen-

cies, hence the computational efforts per time slice cannot be compared. The results of the

comparison are presented in Table 5.2.

The main strength of the Mattia and Del Giudice algorithm resides in the layered structure of

4 up to 16 delay values. This was designed particularly for computational simplicity, even

if it was done at the expense of the biological plausibility. Moreover, the simulation time

per neuron obtained with the layered-delay algorithm (Table 5.2) is based on an average

spiking frequency of 2.5 Hz. This means that in one second of simulation time, each neuron

fires less than three times. In the case of the quick-sorting algorithm, time per neuron was

computed when a number of Nf neurons fired at a frequency of 100 Hz. The difference in

the frequencies is essential when comparing the algorithms. For instance, in the case of a

network with N = 4k units a spiking frequency of 100 Hz generates a pool of events of
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N Nf Layered delays QuickSort pool
(1k units) (1k units) (ms) (ms)

2.5 Hz 100 Hz
0.5 1.0 0.45 1.0
1 2.4 0.8 2.5
2 5.0 1.4 3.1
3 7.0 2 4.3
4 9.5 2.7 5.2
5 12.0 3.2 6.3

Table 5.2: Execution times per neuron vs. size of the network N, when Nf neurons fire. For
the layered–delays algorithm we refer to the Mattia and Del Giudice (2000) algorithm. Note
that the average firing rate in the layered delays simulation is 2.5 Hz, whereas the execution
times for the Quick-Sorting algorithm are recorded for a neural activity of approx. 100 Hz.

the order of 220, 000 elements. Hence, our algorithm manages to keep the simulation time

approximately twice as long as the layered-delay algorithm with 30 times higher frequency.

And most importantly, it still manages to preserve the essentials of neural behavior (i.e.,

noisy synaptic transmission).

5.2.3 Learning framework

So far in this section, we described the implementation of the PROPAGATE ACT function

that is used to apply and propagate a time-coded input pattern through the network. The

final task is to implement the training function LEARN Spike that specifies how the network

learns a complete set of input patterns.

The training procedure consists of a loop that executes a series of actions. It takes a new

input pattern from the set (lines 2, 12 Algorithm 7) and it applies it to the network. It propa-

gates the network activity until a reference time timeout is reached or until there are no more

spikes to process (see PROPAGATE ACT in Section 5.2.1). Then, it updates the synapses of

those neurons selected for learning during the training step (i.e., the firing neurons). Learn-

ing is applied with a frequency Lf , that can be 1 or any number up to the training set di-

mension. Before the beginning of a new training step, the network activity can be reset or

preserved, as a function of the parameter af . In the simulations described in chapter 6, the

network activity was reset during training after the presentation of each input pattern, and
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it was preserved in the testing phase.

Algorithm 7 LEARN Spike
Require: pattern set P , learning frequency Lf

1: setup simulation times (tstart, tout, tint, ct)
2: cp = first pattern(P ) {get first pattern}
3: while not nul (cp) do {for all input patterns}
4: PROPAGATE ACT(cp)
5: if number(cp) %Lf = 0 then {time to apply learning }
6: for all i ∈ LearningNodes do
7: Learning Function(i) {apply learning to the synapses of neuron i }
8: end for
9: end if

10: reset network activity(af ) {reset or keep neurons activities}
11: update simulation times (tout, tint, ct)
12: cp = next pattern(P ) {get next pattern}
13: end while

The Learning Function (line 7 in Algorithm 7) can implement any type of synaptic adap-

tation rule. Several rules for learning with spiking neural networks have been described

in Section 4.4. At the present, the existent learning rules in SpikeNNS implement a self-

organization learning framework used for the simulation of the cognitive models described

in Sections 6.1 and 6.2. Hebbian and anti-Hebbian plasticity for excitatory synapses and a

type of correlation-based learning for the inhibitory synapses have been also implemented

(see Section 6.2). Future work is aimed at extending the number of learning functions with

supervised rules and other forms of spike-timing dependent synaptic plasticity.

5.3 Description of simulator features

5.3.1 Stuttgart Neural Network Simulator

The scope of the modeling work carried out in this thesis is to provide an illustration of

how a cognitive phenomena, such as visuomotor mapping or movement planning, can be

grounded at the neural level. In Section 4.3 it was argued that a simple, rather than a de-

tailed neural model, is more appropriate for our modeling goals. We have described the

implementation of a neural model, namely the Spike Response Model (Gerstner, 1999). The

reasons we did not use a preexisting simulator for pulsed neural networks and choose to

build our own implementation are twofold. Firstly, the most powerful and user-friendly
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simulators for spiking neurons existent today are based on detailed models of the neuron

structure: Neuron (Hines and Carnevale, 1995), GENESIS (Bower and Beeman, 1998). This

makes them less suitable for the simulation of large-scale cognitive phenomena. Secondly,

freely available simulators of simplified neural models are restricted as applicability, since

they have been created for specific modeling issues and run on certain hardware platforms.

For instance, INFERNET (Sougné, 1999) is a simulation framework created particularly to

explore cognitive binding and inference, and which works on Macintosh machines.

Therefore, it is rather difficult to adapt a simulation environment created to support the de-

velopment of a family of models in one domain to another domain study. What seemed to be

the best solution was to use a general-purpose simulator that can provide good visualization

facilities and the possibility of code re-use. It was decided to take a simulation environment

designed for the traditional, continuous valued neurons and to extend it to deal with the

more biologically realistic spiking neurons. The simulator chosen was the Stuttgart Neural

Network Simulator (available at http://www-ra.informatik.uni-tuebingen.de/SNNS/).

Stuttgart Neural Network Simulator (SNNS) is a software simulator, currently available for

Unix and Windows platforms, developed since 1990 at the Institute for Parallel and Dis-

tributed High Performance Systems (IPVR) at the University of Stuttgart (Zell et al., 1992).

It supports arbitrary network topologies, it is highly configurable and includes a relatively

large number of learning procedures, starting with backpropagation algorithms, ART maps,

Kohonen networks and ending up with time-delay and recurrent networks. The graphical

user interface (Figure 5.7) offers a 2D/3D representation of the neural networks and allows

an user-friendly control of the kernel during the simulation run. The sources of the im-

plementation in C for Unix platform are freely available, and can be easily extended with

user-defined libraries. SNNS is a widely distributed neural network simulator and its use

and extension is technically supported by the SNNS team and by the SNNS discussion mail-

ing list.

The advantages of using the SNNS framework for the development of our pulsed neural net-

work libraries were twofold. First, we benefit from the substantial functionality of the simu-

lator and second, we can make the modeling extensions publicly available to the substantial

SNNS user community. However, there are also disadvantages when adapting a simulator

built for processing with rate coding neurons for the simulation of spiking neurons behav-

ior. Some of the aspects of how an efficient simulation of pulsed neural network differs from

a traditional neural network simulation have been emphasized in Section 5.2.1. The main
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Figure 5.7: User interface (XGUI) of the Stuttgart Neural Network Simulator.

design considerations regard the type of the connectivity scheme (i.e., sender-oriented vs.

receiver-oriented) and the type of simulation engine (i.e., synchronous vs. asynchronous).

The first implementation of the Spike Response Model using the SNNS data structures in-

dicated that the original kernel libraries are not very appropriate for the simulation of spik-

ing neurons (see Sections 5.1.2, 5.2.1). Consequently, we had to re-engineer a number of

functions in the SNNS kernel and create dedicated data structures suited to the specifics of

computing with spiking neurons. Another aspect that we had to consider in the simulator

design, was the compatibility of the spiking neural functions with the SNNS own functions.

Thus, the names, parameters, return codes or functionality of the new procedures have been

designed in accord with SNNS conventions. At some point, this aspect constrained the way

functions were built.

The extension of the SNNS environment to support simulations with spiking neurons was

named SpikeNNS. This extension needed the re-engineering of some parts of the kernel,

as well as the addition of dedicated functions, in order to allow computation with spiking

neurons. The library of spiking neurons functions consists of: the implementation of the

Spike Response Model (SRM), the event-driven simulation engine, functions for the appli-

cation of time-coded input patterns, routines for learning with spiking neurons. Additional
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functions are required for initialization, testing and gathering firing statistics. The sources of

SpikeNNS simulator will be freely available at http://cortex.cs.may.ie/tools/SpikeNNS.html.

5.3.2 Setting up a simulation with SpikeNNS

The process of setting up a simulation in SpikeNNS involves a number of steps:

• First, the specification of a prototype of the basic computational unit is required. The

parameters of the neural model are specified from the SNNS configuration file. They

are discussed below.

• Next, the connectivity of the network is created. This can be done either using the

graphical interface available in SNNS for building networks, or by generating it with

SpikeNNS functions. Parameters for the configuration of three types of a connectivity

are given in Table 5.4 and described below.

• Finally, an initialization procedure is run to set the specific values of the spiking neu-

rons simulation.

Initialization of neural parameters

The behavior of a spiking neuron is described by Equations 4.2, 4.3, and 4.5 (Section 4.3)

and depends on a set of parameters, which can be defined by the user. These parameters are

enumerated in Table 5.3 and have been described in detail in Section 4.3. The initialization

of these values and other spike-specific parameters is done with the procedure INIT Spike.

At initialization, each hidden neuron in the network is assigned a noisy threshold computed

by the formula:

Θ = maxΘ−R(∆Θ), (5.8)

where R is a function that returns a random number uniformly distributed between 0 and

∆Θ. When a spike is emitted on a synapse, a noisy delay is generated as a function of the

synapse length l:

d = l +G(∆d), (5.9)

where l is given by the Euclidean distance between the connected neurons and G is a Gaus-

sian distribution with mean 0 and standard deviation ∆d. The firing time of a neuron is
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Neural parameters

maxΘ - maximum neural threshold
∆Θ - threshold spread value

τm - membrane time constant

u, v - refractory period parameters

Fj - number of spikes stored / neuron

∆d - noise factor in the generation of synaptic delays

∆f - noise in the firing time value

Ne - percent of excitatory neurons

ce, ci - connectivity rates of excitatory and inhibitory neurons

∆c - random factor in connections number

Table 5.3: The configurable parameters of the neural model.

affected by noise with Gaussian distribution with mean 0 and ∆f standard deviation, ac-

cording with the formula:

tf
′

= tf +G(∆f). (5.10)

At initialization, each unit is probabilistically defined as either excitatory or inhibitory, so

that an average number Ne of excitatory neurons will exist in the network. If the users

chooses to implement a sparse connectivity pattern (see Section 5.3.2), than the number of

lateral connections per neuron is specified by the formula

c = C ·N +G(∆c), (5.11)

where N is the total number of neurons in the network and C = ce ∨ ci is the rate of con-

nectivity per excitatory, or inhibitory neuron respectively. The Gaussian distribution has the

mean 0 and standard deviation ∆c.

Creation of a connectivity pattern

SNNS is a simulation environment designed for the modeling of classical neural networks.

Hence, it does not address in particular, the problem of creating biologically realistic con-

nectivity patterns. Most readily, the network topology can be set up to full connectivity

between any two layers or between any clusters of units, defined by their coordinates (x, y)

in the network. By contrast, the topologies of biologically inspired networks usually are
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based on sparse probabilistic connections or regular synaptic patterns (see below). That is,

because in the cerebral cortex each neuron is coupled to a reduced number of other neurons,

in a non-random fashion (Braitenberg and Schuz, 1998). Cortical synapses within the same

layer most commonly connect cells with similar neural response, while projections between

layers convey information from one stage to another in a topographical manner (Kandel et

al., 2000; see also Section 2.2.4).

SpikeNNS offers a number of configurable functions, which can be used to generate three

types of connectivity patterns, independently of the neural model used (see parameters in

Table 5.4):

• Intra-layer sparse connectivity, with a short-range distribution of the excitatory connec-

tions and long-range distribution of inhibitory synapses. There is experimental evi-

dence that a Mexican-Hat shape of connectivity with inhibition surrounding excita-

tion is biologically plausible and it favors the process of lateral and afferent weights

self-organization (see Section 2.2.4).

• Inter-layers topographical projections. In the cerebral cortex sets of neurons which con-

vey information from one processing stage to another are usually projecting in a topo-

graphical manner (see the retina-LGN-V1 projections, Kandel et al., 2000).

• Afferent receptive fields, which convey signals from a distinct area of the input space to

a cortical (e.g., hidden) neuron (Kandel et al., 2000).

In SpikeNNS, connections are defined by their weight w and the synaptic length l that de-

termines the value of the spike transmission delay (see Equation 5.9). The synapse weight

is computed by the formula:

w = maxw −R(∆w), (5.12)

where R is a function that returns a random number uniformly distributed between 0 and

∆w.

Sparse connectivity. To create within a target layer n, a sparse, centered-surround connec-

tivity pattern, a number of steps are involved (see parameters in Table 5.4). First, for every

neuron i in n, the probability of being connected with any other neuron j in the same layer

is computed. The probability to create a synapse depends on the sign of the source neuron

(i.e., excitatory or inhibitory neuron), the distance to the target neuron and the connectivity
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Type Connectivity parameters

Sparse n - target layer
intra-layer maxw, ∆w - maximum weight and deviance value
connectivity σe, σi - connectivity decay parameters

Topographical s, t - source and target layer
inter-layers maxw, ∆w - maximum weight and deviance value
projections Lp - sets the size of projection for topographical connections

bi - sets on the bidirectional connectivity between s and t

Receptive i, t - input and target layer
afferent maxw, ∆w - maximum weight and deviance value
fields di,∆d - delay and deviance value for input connections

Rf - sets the radius of the receptive field
m - sets the value of the magnification factor

Table 5.4: The configurable parameters for three types of connectivity: intra–layer, inter–
layers, and receptive fields.

decay parameter. Thus, an excitatory synapse from neuron i to neuron j has the creation

probability of:

p = e
−d[ui,uj ]

σe , (5.13)

where d[ui, uj ] is the Euclidean distance between the units and σe is a constant which con-

trols how fast the connectivity decays with the distance in the layer (formula adapted after

Ström, 1997). An inhibitory connection is added with a probability of

p = 1− e
−σi

d[ui,uj ] . (5.14)

After the probabilities of all possible output connections of the neuron i have been gener-

ated, these values are sorted in a descending order in an array. The array is then parsed

starting from the highest values and an output synapse is created if the associated proba-

bility is less than a random number r. The value of this number is uniformly distributed

within an interval, whose limits are set differently, depending on the sign of the synapse

r = basei,e − std.devi,e. Synapses are added to the network topology until the number of

connections per neuron c (Equation 5.11) is reached.

Figure 5.8 shows for two target units at locations (4,12) and (13,6) in the network, the presy-

naptic units in the layer. The excitatory units (shown in blue) are distributed (probabilis-

tically) within an area of dimension four surrounding the target unit. The long-range in-
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Figure 5.8: Sparse probabilistic connectivity pattern in SpikeNNS, which a short-range dis-
tribution of excitation and long-range distribution of inhibition. For two neurons, at loca-
tions (4,12) and (13,6) the input units are shown. The blue signs designate excitatory presy-
naptic units. The inhibitory units are shown in red (or magenta). The connectivity decay
parameter is σ = 4.

hibitory synapses are received from units located at distances greater then four, up to the

network margins. The percent of excitatory units in the network is of 80%. Parameters used

in the generation of this pattern, were σe = 4, σi = 3.5. Random values were generated us-

ing basee = 1 and std.deve = 0.3 for excitatory synapses, and basei = 0.7 and std.devi = 0.4

for inhibitory synapses.

Topographical projections. In SpikeNNS, topographical projections can be created only be-

tween hidden layers (see parameters in Table 5.4). Each neuron in the source layer s projects

in the target layer t in a sub-array of units of size Lp. Note that current implementation of

the function works only for dimensions of the target layer that are equals or larger than the

source layer dimension. If bi parameter is set on (i..e, bi = 1), than reciprocal projections

between layers s, t are created.

Receptive fields. Receptive fields can be created from an input layer i to any hidden layer

t (see Table 5.4 for parameters). In such a connectivity scheme, a hidden unit of coordinates

(x, y) receives stimulation from a square area of size Rf that is centered in the input layer

(approximately) at ( x√
m
, y√

m
). The value of the magnification factor m gives the ratio of

hidden units per one input unit. That is, because the hidden layer has a higher dimension

then that of the input layer and this allows the formation of several receptive fields for each

location in the input array.
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Implementation of the functions described above is independent of the type of the neural

model specified (i.e., rate-coding or spiking neuron). Hence, they can be used to create net-

work topologies, when any activation or output functions from SNNS are employed. Note

that each of the above functions deletes any previously existing connectivity between the

layers given as parameters. Therefore, they cannot be used in conjunction with the SNNS

graphical interface for setting intra- or inter-layer connectivity. All parameters for the ini-

tialization of the neural model the setting of the connectivity patterns and for learning can

specified in the SNNS configuration file. The SNNS control panel allows on-line modifica-

tion of at most five parameters. When a particular function is loaded, such as ACT Spike,

LEARN Spike or INIT Spike, all its parameters are initialized from the configuration file.

Only the first five values are displayed and can be updated through the control panel.

5.3.3 Learning parameters

As noted above, the parameters for learning are set in the configuration file and initialized

during the call of the function INIT Spike. Training of a pulsed neural network in SpikeNNS

is performed using Algorithm 6 (Section 5.2.2), which represents our most efficient version

of an event-driven strategy. The general learning framework was described in Section 5.2.3.

Three timing parameters have to be set for the LEARN Spike function: an absolute value

of the simulation start time tstart, an arbitrary value of the integration time moment tint,

and the time out limit tout, until which the network activity is computed during a training

step. For a description of these parameters significance see Section 4.3.4. Other parameters

which have to be set for the training of a pulsed neural network concerns: the look-ahead

value for the event-driven algorithm Twindow, the flag af , which tells if the network activity

is reset after each pattern propagation, and the learning frequency Lf (see description of

parameters in Section 5.2.3).

During training and testing of a network, a number of statistics with respect to the neurons

firing behavior can be collected and saved in a results file. This information concerns mainly

the spike timings for each neuron in the hidden layers and the discharge rates during each

input pattern application. The extension of the SNNS simulator to support modeling of

spiking neural networks is only at its beginning and more work will be required in order to

provide an integrated new version of SNNS.
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