
Chapter 4

Spiking neural model

In the previous decade, the majority of artificial neural network models were based on a

computational paradigm involving the propagation of continuous variables from one unit

to another (Rumelhart and McClelland, 1996). However, in recent years experimental ev-

idence has been accumulating to suggest that biological neural networks, which commu-

nicate through spikes, use the timing of these spikes to encode and compute information

(Abeles, 1991; Thorpe et al., 1996; Rieke et al., 1997). Several alternative schemes to the

rate–coding hypothesis have been proposed, suggesting that information may be coded in

synchronization and oscillations of populations of neurons, or in the precise timing of the

neural pulses (Recce, 1999; Gerstner and Kistler, 2002).

A new generation of pulsed neural networks has emerged, which focuses upon the mathe-

matical formalization of the computational properties of biological neurons (Gerstner, 1995;

Maass, 1997; Stevens and Zador, 1998). The neural models created capture the spiking na-

ture of the neurons and retain the essentials of the behavior to be modeled, while trying to

simplify the description (Gerstner, 1999; Izhikevich, 2001). This chapter focuses upon the

description of a simplified spiking neural model and of the type of computations that it can

account for.

In order to understand how a biologically inspired neural model behaves it is necessary

to offer a brief introduction in the physiology of the real cell (Section 1). Neural activity

of biological cells may be described at several levels of abstraction. In Section 2, the main

tendencies in neural modeling, i.e., detailed vs. simplified, are reviewed, outlining the ad-

vantages and drawbacks of each direction. This description is followed by the presentation
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Figure 4.1: Schematic of a biological neuron. See in text for the description of the function-
ality of each component.

of a number of time-coding schemes and computation modes that are implemented in our

simulator. In Section 3 the neural model implemented in SpikeNNS is described (e.g., equa-

tions, parameters, input patterns). The last section offers a brief review of a number of

learning rules for spiking neurons.

4.1 Biological neuron physiology

The brain is a collection of about 10 billion interconnected neurons. Each neuron is a cell

that uses biochemical reactions to receive, process and transmit information. The neural

unit represents the basic information processing mechanism that is the foundation of human

cognition.

4.1.1 Neural components

A typical neuron can be divided into three functionally distinct parts, namely the dendrites,

the soma, and the axon (see Figure 4.1). A neuron receives connections from thousands other

neurons. Most of these contacts take place on the neuron dendritic tree, however they can

also exist on the soma or the axon of the neuron. The morphology of the dendritic tree

plays an important role in the integration of the synaptic inputs and it influences the way

the neuron processes information and computes (Mel, 1994). The strengths of the charges

received by a neuron on its dendrites are added together through a nonlinear process of

spatial and temporal summation (Koch, 1999). The resulting input flows to the soma and
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suffers voltage attenuation, so that about half of the total charge injected into the distal

dendritic site reaches the soma.

Two parameters play a critical role in the spatio–temporal integration of synaptic inputs:

the space constant λ that gives the voltage attenuation with distance and the membrane time

constant τm, which describes how fast the voltage decays. The input transmission from a

dendritic site to the soma is characterized by a propagation delay. In the case of slowly varying

inputs this is dictated by the membrane time constant value, but for fast synaptic inputs

it outpaces τm, giving the possibility of submilisecond coincidence detection in dendrites

(Koch, 1999).

The primary function of the soma is to perform the continuous maintenance required to

keep the neuron functional (Kandel et al., 2000). The part of the soma that performs the

important non–linear processing of the input is the axon hillock. If the total input produces

a depolarization up to the neural threshold (i.e., of about −55 mV), the axon hillock fires an

action potential. The output signal is transmitted down the axon, which delivers it to other

neurons.

4.1.2 The action potential

The firing of a neuron, referred to as the action potential, is an all or none response. This

means that, incoming stimuli either produce action potentials, if they exceed the neuron’s

threshold value, or they do not. A spike or action potential is a stereotyped impulse of

fixed magnitude generated by the neuron. After the firing of an action potential, the neuron

enters a refractory period when no further action potentials can be generated. Even with very

strong input, it is impossible to excite a second spike during or immediately after a first one.

This causes that action potentials in a spike train are usually well separated. The minimal

distance between two spikes defines the absolute refractory period of the neuron. The absolute

refractory period is followed by a phase of relative refractoriness where it is difficult, but not

impossible, to generate an action potential (Kandel et al., 2000; Gerstner and Kistler, 2002).

4.1.3 Synapses

The site where the axon of a presynaptic neuron makes contact with the dendrite (or the

soma) of a postsynaptic cell is the synapse. The most common type of synapse in the ver-
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tebrate brain is a chemical synapse (Shepherd and Koch, 1990). When an action potential

arrives at a synapse, it triggers a complex set of biochemical processes that lead to a re-

lease of neurotransmitters from the presynaptic terminal into the synaptic gap. The voltage

response of the postsynaptic neuron to a presynaptic action potential is referred to as the

postsynaptic potential. A single synaptic input is rarely sufficient to determine the generation

of an action potential. This is usually triggered as a consequence of the nonlinear interaction

of several excitatory and inhibitory synaptic inputs (Mel, 1994; Poirazi et al., in press). At

the end of the synaptic action, the postsynaptic potential decays exponentially towards the

resting value with a rate of decay given by the time constant τm. The physical and neu-

rochemical characteristics of each synapse determine the strength and polarity of the new

input signal. Synapses are believed to be the locus of learning and memory in the brain

(Squire and Kandel, 1999). This is where the brain is the most flexible and the most vulner-

able.

4.2 Computational and modeling aspects

The idea that brains are computational in nature has captured the attention of many re-

searchers in the last decade (Churchland and Sejnowski, 1992; Maass, 1995; Koch, 1999;

O’Reilly and Munakata, 2000). In a strict sense, a physical system computes a particular

function if there is an appropriate mapping between the physical states of the systems and

the elements of the function and if the mapping of the input space into the output space per-

formed by the function can be described in terms of some rule (McCarthy, 1963; Churchland

and Sejnowksi, 1992). For instance, one can describe the stochastic behavior of a neuron that

maps an activation value V to a binary response that is a spike in 25% of the cases and no spike

in 75% cases with a probability distribution function: f : V− > (g : {spike, no spike}− >

[0, 1]) (after Touretzky, 2001).

The studies concerned with the way the brain represents and computes information based

on the activity of neural components and using as main methodology the computer simu-

lations, are unified under the computational neuroscience discipline (see the introduction

to the field in Section 1.1). This research stream differs from other approaches of neural

modeling in that it believes that understanding the way the brain computes is very closely

dependent on the knowledge of the anatomical and physiological details of neural elements

(Bower and Beeman, 1998). Hence, we can talk about a general tendency in computational
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neuroscience towards realistic simulation of the structure and physiology of the biological

neurons.

4.2.1 Levels of detail in neural modeling

Neural activity may be described at several levels of abstraction. We can distinguish be-

tween two major modeling directions in computational neuroscience, depending on how

much of the neuron details the modeler wants to take into account. That is, because the more

details are taken into account, the greater are the computational demands of the model.

Detailed neural models

One trend in computational neuroscience is oriented towards creating ever more detailed

and complex models (De Schutter and Bower, 1994 a,b; Bower and Beeman, 1998; Segev

and Burke, 1998; Steuber and De Schutter, in press). The detailed modeling of the neurons

aims to describe the chemical processes undergone at the subcellular level, including the

biophysics of ionic channels and dendritic trees, the synaptic interactions between excita-

tion and inhibition, the voltage-dependent events in the active dendrites (Destexhe et al.,

1998; Mainen and Sejnowski, 1998). In this effort, the neurobiologists argue that one has

to consider the anatomical and physiological details of the neurons if he/she pursues a full

understanding of the nervous system (Bower and Beeman, 1998).

The model proposed by Hodgkin and Huxley in 1952 offers perhaps the clearest instance of

a detailed model of the processes involved in action potential generation. The model pro-

vides a detailed description of the biophysics of ionic mechanisms underlying the initiation

and propagation of the neural spike. By doing this, it offers an accurate quantitative model

of the physiological data. However, complex frameworks like the Hudgkin-Huxley model,

which account for numerous ions channels and different types of synapses are difficult to

construct and to analyze. An important conceptual drawback of this family of models is

that their numerical complexity (e.g., solve a large number of nonlinear differential equa-

tions) can prevent one from understanding which features are responsible for a particular

phenomenon and which are irrelevant (Koch, 1998).

Hodgkin-Huxley-like models can be applied to point neurons, that is, neurons without any

spatial structure. However, the morphology and architecture of the dendritic tree plays an
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important role on the nonlinear functioning of the neurons (Mel, 1994; Vetter et al., 2001).

For the construction of detailed neuronal models that consider all of the cells complexities,

including the branched cable structure, the standard approach is to divide the neuron into

a finite number of isopotential connected compartments (Rall and Agmon-Snir, 1998; Segev

and Burke, 1998). Each compartment acts like a capacitance-resistance circuit, modeled by

a system of ordinary differential equations. It can represent somatic, dendritic or axonal

membrane and contain a variety of synaptic inputs (Segev and Burke, 1998).

Compartmental models are implemented by powerful, biologically realistic simulators, such as

Genesis (Bower and Beeman, 1998) and Neuron (Hines and Carnevale, 1998). Nevertheless,

there is an important computational cost in memory and speed that detailed simulations

based on compartmental models must pay. For instance, modeling of calcium dynamics

in a single Purkinje cell, using 4550 compartments and 8021 ionic channels required 8 Sun

workstations running one hour for the simulation of 550 ms of Purkinje cell activity (De

Schutter and Bower, 1994a, b).

A major argument in favor of detailed modeling is that the close replication of the nervous

system structure as a basis of exploring its functions increases the chances to discover its

unknown (or unsuspected) organizational principles (Bower, 1997). The drawbacks arrive

from the complexity of these models. That is, they are difficult to construct and analyze; they

scale poorly with the network size and activity; they represent a quantitative, rather than

a qualitative description of the neural behavior, which can prevent one from understand-

ing the crucial features of the system. Despite the recent efforts oriented for the creation

of simulation frameworks that allow modeling of large-scale networks of biologically real-

istic neurons (see Parallel GENESIS, Bower and Beeman, 1998; Goddard et al., 2001), the

detailed models are generally considered more suitable for the study of single neurons or

small networks behavior.

Formal spiking neuron models

The second stream of research in computational neuroscience is oriented towards model-

ing the spiking nature of the neurons and retaining the essential elements of the behavior

being modeled, while trying to simplify the complexity of the resulting description (Ger-

stner, 1991; Maass, 1995; Maass, 1997; Rieke et al., 1997). The principal motivation for the

creation of simplified models is that they allow studying more easily the computational and
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functional principles of neural systems (Koch, 1999).

The reduction of the detailed neuron models to formal models requires simplifications in

at least two respects. First, the non–linear dynamics of spike generation must be reduced

to a single ordinary differential equation and second, the spatial structure of the neuron

(i.e., the dendritic tree) is neglected and reduced to an input (Gerstner and Kistler, 2002). To

support the validity of the former simplification, Kistler et al. (1997) demonstrated that spike

generation in the Hodgkin–Huxley model can be reproduced to a high degree of accuracy

(i.e., up to 90%) by a single variable model. The authors pointed out that the Hodgkin–

Huxley model shows a sharp, threshold–like transition between an action potential for a

strong stimulus and graded response (no spike) for slightly weaker stimuli. This suggests

that the emission of an action potential can be described by a threshold process (see also

Section 4.3.1).

Several simplified neural models have been proposed in the last decades. The leaky integrate–

and–fire neuron is probably the best–known example of a formal neural model (Tuckwell,

1988; Bugmann, 1991; Stevens and Zador, 1998). It simulates the dynamics of the neuron

membrane potential in response to a synaptic current by implementing an equivalent elec-

trical circuit. The function of the integrate–and–fire circuit is to accumulate the input cur-

rents and, when the membrane potential reaches the threshold value, to generate a spike.

Immediately after emitting a pulse, the potential is reset and maintained there for an abso-

lute refractory period.

The simplified mathematical models for spiking neurons cannot account for the entire range

of computational functions of the biological neuron. Rather, they try to abstract a number of

essential computational aspects of the real cell function. The essential features implemented

can differ between models, as a function of what the modeler considers to be relevant and

crucial for its domain study. Thus, the integrate–and–fire model focuses upon the temporal

summation function of the neuron (Bugmann and Taylor, 1997). The spike response model pro-

posed by Gerstner (1999) simplifies the action potential generation to a threshold process.

The resonate–and–fire model (Izhikevich, 2001) focuses upon the operation of the neuron in a

resonating regime. By contrast with the detailed neural models, the computational strength

of the spiking neurons arises from the way they interact with each other, when they work

cooperatively in large networks.

In summary, this section presented a brief description of the main modeling directions in

computational neuroscience. The aim of this was to outline the advantages and drawbacks
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of each research stream. The review indicates that there is a trade–off problem that a re-

searcher has to solve, when choosing the appropriate level of detail for the task to be sim-

ulated. Another aspect, which differentiates the two approaches, concerns the time scale

at which they work. Detailed neural models are more appropriate to investigate neural

patterns of activity that emerge within a short–time scale (i.e., hundred of ms of seconds).

Conversely, networks of spiking neurons can be used to model learning in developmental

processes (see Koch, 1999).

As stated in the introduction to this thesis, the general aim of our work is to investigate how

cognitive phenomena such as visuomotor coordination, can emerge through development,

from the properties of basic elements when they interact and function cooperatively. Con-

sequently, our simulation work will be built using a simplified neural model, considered to

be best suited to our modeling purposes. In the remainder of this section, we describe what

types of computations with spiking neurons are accounted for in our model.

4.2.2 Neural communication with spikes

Neurons communicate by producing sequences of fixed size electrical impulses called action

potentials or spikes (Adrian, 1926). As Rieke and colleagues puts it:

Spike sequences are the language for which the brain is listening, the language
the brain uses for its internal musings, and the language it speaks as it talks to
the outside world (Rieke et al., 1997, page 1).

In the theory of neural information processing, there are two main hypotheses with respect

to where in the spike train the neural information is encoded: in the neural firing rate or in

the precise timing of the spikes. These hypotheses are introduced in turn, below.

Rate coding

Adrian (1926) introduced the concept of rate coding, by which the number of spikes in a

fixed time window following the onset of a static stimulus code for the intensity of the

stimulus. Since Adrian’s studies, the rate coding hypothesis has been dominant in the neural

computational field (see for a review Recce, 1999). The definition of the rate has been applied

to the discovery of the properties of many types of neurons in the sensory, motor, and central
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nervous system, by searching for those stimuli that make neurons fire maximally (Kandel et

al., 2000).

Recent observations on the behavior of cortical visual neurons demonstrated a temporal

precision in brain function that is higher than would be predicted from frequency coding

(Abeles et al., 1993; Thorpe et al., 1996; Abeles and Gat, 2001). This suggests that firing rate

alone cannot account for all of the encoding of information in spike trains. Consequently, in

the last decade, the focus of attention in experimental and computational neuroscience has

shifted towards the exploration of how the timing of single spikes is used by the nervous

system (Gerstner and Kistler, 2002; see Section 4.2.2).

It is important to understand that the pulse coding represents an extension of the way neu-

rons code information, rather than a replacement of the firing rate code. Panzeri and Schultz

(2001) proposed such a unified approach to the study of temporal, correlation and rate cod-

ing. They suggest that a spike count coding phase exists for narrow time windows (i.e.,

shorter than the timescale of the stimulus-induced response fluctuations), while for time

windows much longer than the stimulus characteristic timescale, there is additional timing

information, leading to a temporal coding phase.

Temporal coding by relative latencies

In a temporal code, information can be contained in the temporal pattern of spikes (inter–

spike interval codes) or in the time–of–arrival of the spike (relative spike timings) (Cari-

ani, 1997). In the following, we discuss the later coding scheme, which is implemented

in SpikeNNS.

Neurobiological studies of sensory coding of stimuli in the auditory and visual systems

revealed that latency of transmission is a potential candidate for coding the stimulus features

(Bugmann, 1991; Heil and Irvine, 1996; Heil, 1997). An example is the study by Gawne et

al. (1996) who showed that the latency of neurons response in the striate cortex is a function

of the stimulus contrast and that synchronization based on spike latencies can make an

important contribution to binding contrast related information. The coding scheme which

represents analog information through differences in the firing times of different neurons is

referred to as delay coding or latency coding (Hopfield, 1995; Gawne et al., 1996; Maass, 1997;

Thorpe and Gautrais, 1998).
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Figure 4.2: Coding by relative delay. The neurons in figure emit spikes at different moments
in time t(f)

j . The most strongly activated neuron fires first (i.e., second from left). Its spike
travels a considerable distance along the axon, until last neuron fires (i.e., the fourth from
left). The latencies xj are computed with respect to a reference time T (adapted after Thorpe
et al., 2001).

According to Hopfield (1995) and Maass (1997), a vector of real numbers (x1, ..., xn) with

xj ∈ [0, 1] can be encoded in the firing times tj of n neurons, such as t(f)
j = T − c · xj ,

where T is some reference time and c · xj represent the transmission delays. The timing can

be defined relatively to some other spike produced by the same neuron or to the onset of a

stimulus. If for each neuron, we consider only the latency of the first spike after the stimulus

onset, then we obtain a coding scheme based on the time–to–first–spike.

According to Van Rullen and Thorpe (2001) cells can act as ’analog–to–delay converters’.

That is, the most strongly activated cells will tend to fire first and will signal a strong stim-

ulation, whereas more weakly activated units will fire later and signal a weak stimulation.

This coding scheme was proposed by Thorpe and Gautrais (1998), who argued that dur-

ing visual object recognition the brain does not have time to evaluate more than one spike

from each neuron per processing step. The idea is supported by other experimental stud-

ies (Tovee et al., 1993) and was used to implement learning in a number of neural network

models, based on the timing or the order of single spike events (Ruff and Schmitt, 1998; Van

Rullen et al., 1998, see also Section 6.1).
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4.2.3 Computational properties of spiking neurons

Spiking neural models can account for different types of computations, ranging from linear

temporal summation of inputs and coincidence detection to multiplexing, nonlinear opera-

tions and preferential resonance (Koch, 1999; Maass, 1999). Several recent studies employing

rigorous mathematical tools have demonstrated that through the use of temporal coding, a

pulsed neural network may gain more computational power than a traditional network

(i.e., consisting of rate coding neurons) of comparable size (Maass and Schmitt, 1996; Maass,

1997).

A simple spiking neural model can carry out computations over the input spike trains un-

der several different modes (Maass, 1999). Thus, spiking neurons compute when the input

is encoded in temporal patterns, firing rates, firing rates and temporal corellations, and

space–rate codes. An essential feature of the spiking neurons is that they can act as coinci-

dence detectors for the incoming pulses, by detecting if they arrive in almost the same time

(Abeles, 1982; Softky and Koch, 1993; Kempter et al., 1998).

When operating in the integration mode (see the integrate-and-fire model in Section 4.2.1),

the output rate changes as a function of the mean input rate and is independent of the fine

structure of input spike trains (Gerstner, 1999). By contrast, when the neuron is functioning

as a coincidence detector, the output firing rate is higher if the spikes arrive simultaneously,

as opposed to random spike arrival. More precisely, the neuron fires (e.g., signals a de-

tection) if any two presynaptic neurons have fired in a temporal distance smaller than an

arbitrary constant c1, and do not fire if all presynaptic neurons fire in a time interval larger

than another constant c2 (Maass, 1999).

For a neuron to work as a coincidence detector, two constraints have to be satisfied: (1) the

postsynaptic potential has to evolve in time according to an exponential decay function and

(2) the transmission delays must have similar values, so that the simultaneous arrival of the

postsynaptic potentials which cause the neuron to fire will reflect the coincidence of presy-

naptic spikes (Maass, 1999). Note that not any spiking neural model can detect coincidence.

For instance, the resonator neuron fires if the input train of spikes has the same phase with

its own oscillation, but has low chances to spike if the inputs arrive coincidentally (Izhike-

vich, 2000).

In SpikeNNS, neurons can compute in two regimes: coincidence detection and threshold–

and–fire. Acting as coincidence detectors is more likely for hidden units, when they com-
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pute over pulses coming from the input layers. That is, because in our implementation, the

input spikes arriving on the afferent connections are affected by similar delays with a small

noise factor. The latency of the spikes is given by the firing times of the input nodes. The

operation in this computing domain depends also on the neural threshold and on the value

of the membrane time constant that describes how fast decays the posystynaptic potentials

(see Section 4.3.2).

In the threshold–and–fire mode, neurons perform a linear summation of the inputs in a

similar manner with the integrate–and–fire model. The integration of pulses over a larger

time interval is particularly required in the case of spikes arriving on the lateral synapses,

which are affected by a large range of delays (e.g., from 1 to 10 ms). The shift between com-

puting modes, i.e., coincidence vs. integration, and between different ways of integrating

the input signals is illustrated by our simulations in Sections 6.1 and 6.2.1 and discussed in

Section 7.1.3.

4.3 Neural model in SpikeNNS

The neural model implemented in SpikeNNS is a simplified version of the Spike Response

Model (Gerstner, 1991; Gerstner et al., 1993; Gerstner, 1999) referred to as SRM0. The Spike

Response Model (SRM) represents an alternative formulation to the well–known integrate–

and–fire model. Instead of defining the evolution of the neuron membrane potential by a

differential equation, SRM uses a kernel-based method. By doing this, the Spike Response

Model is slightly more general than the integrate–and–fire models because the response

kernels can be chosen arbitrarily, whereas for the integrate–and–fire model they are fixed

(Gerstner, 1999). According to Kistler et al. (1997) the Spike Response Model can reproduce

correctly up to 90% of the spike times of the Hodgkin-Huxley model. The model can also be

used to simulate the dynamics of linear dendritic trees, as well as non–linear effects at the

synapses (Gerstner, 1999). The Spike Response Model offers us a powerful computational

framework that captures the essential effects during spiking and has the advantages of a

simple and elegant mathematical formalization.
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4.3.1 Spike Response Model

The Spike Response Model describes the state of a neuron by a single variable, the mem-

brane potential Vi. Figure 4.3a shows the time evolution of the membrane potential of neu-

ron i as a function of time t. Before any input spike has arrived at the postsynaptic neuron

i, the variable Vi(t) has the value 0. The firing of a presynaptic neuron j at time t(f)
j evokes

a postsynaptic potential in the neuron i modeled by the kernel response εij . Each incoming

spike will perturb the value of Vi and if, after the summation of the inputs, the membrane

potential Vi reaches the threshold θ then an output spike is generated. The firing time is

given by the condition Vi(t
(f)
i ) = θ. After the neuron has fired the membrane potential re-

turns to a low value which is described by the refractory period function η. After firing, the

evolution of Vi is given by the equation:

Vi(t) = ηi(t− ti) +
∑
j∈Γi

wij
∑

t
(f)
j ∈Fj

εij(t− ti, t− t(f)
j ) +

∫ ∞
0

ε̃(t− ti, s)Iext(t− s)ds, (4.1)

with s = t− t(f)
j . The first term in the equation (i.e., the kernel ηi) accounts for refractoriness

in the neuron behavior. The second term represents the contribution of all previous spikes

t
(f)
j of presynaptic neurons j on the membrane potential of neuron i. Γi denotes the set of

neurons presynaptic to i, Fj is the set of all firing times of neuron j and wij are the synaptic

strengths between cells (see Figure 4.5).

The kernel εij , as a function of t−t(f)
j , represents the time course of the postsynaptic potential

evoked by the firing of the presynaptic neuron j at time t(f)
j (see Figure 4.4a). The evolution

of the postsynaptic potential function depends also on the time t − ti that has passed since

the last spike of the postsynaptic neuron. That is, because if the neuron is in a refractory

period, its response to an input spike is smaller than if the neuron is fully responsive. The

last term represents the effect on the neuron of an external driving current Iext and the

kernel ε̃(t − ti, s) is the linear response of the membrane potential to the input current and

depends on the time that has passed since the last output spike was emitted at ti (Gerstner,

1999).

SRM0

A simpler version of the Spike Response Model can be obtained by neglecting the depen-

dence of the εij kernel on the term t − ti (i.e., the effect of the neuron’s last spike on the
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(a) Membrane potential in SRM (b) Membrane potential in SpikeNNS

Figure 4.3: (a) Spike Response Model, the membrane potential V of neuron i as a function
of time t. (b) SpikeNNS neural model, the time course of the membrane potential Vi. Θ is
the neural threshold. See in text for more details on the time evolution of the membrane
potential.

postsynaptic potential function) and by considering a null external current. Consequently,

equation 4.1 can be rewritten:

Vi(t) = ηi(t− ti) +
∑
j∈Γi

wij
∑

t
(f)
j ∈Fj

ε0(t− t(f)
j ). (4.2)

This version of the Spike Response Model has been entitled SRM0 and has been applied for

the analysis of computations with spiking neurons by Maass (1999).

The neural model implemented in SpikeNNS is completely specified by the set of Equations

4.2, 4.3, 4.5, which account for several important aspects of neural behavior: the spiking

nature of the neuron, the attenuation of the response at the soma resulting from synaptic

input, the absolute and relative refractory periods. The model also accounts for spike latency

and noise in the neural response (see description in sections below).

Figure 4.3b shows the time evolution of the membrane potential Vi in the simplified neu-

ral model implemented in SpikeNNS. Compared with the membrane potential in the SRM

model represented in Figure 4.3a, the shape of the action potential is reduced to a formal

event, captured by a δ pulse (the vertical line). After the spike emission, the membrane volt-

age is reset to a negative value and is kept there for 1 ms (see Section 4.3.3). The ascending
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Figure 4.4: Postsynaptic potential function in SpikeNNS. The curve decay with time is plot-
ted for different values of the decay rate, given by the membrane time constant τm. Note
that the slope of the curve is negatively correlated with the value of the membrane time
constant.

curve of the ε function also reduces to a pulse, followed by an exponential decay of the post-

synaptic potential (see Section 4.3.2 below). In SpikeNNS, Equation 4.2 is implemented by

the activation function ACT Spike (Section 5.1), which expresses how the membrane poten-

tial V of a node i is calculated at a given time t.

Let us now consider the mathematical description of the two kernels ε and η required in the

Equation 4.2.

4.3.2 Postsynaptic potential function

In SpikeNNS, each hidden neuron is connected to a number of other neurons either from the

same layer or from an input or another hidden layer. The firing of any node, i.e., input or

hidden, is transmitted to all its postsynaptic units, where it evokes a postsynaptic potential

of some standard form (see Figure 4.4). The spike transmission is affected by a noisy delay

d, which in our implementation is proportional with the Euclidian distance between the

presynaptic and the postsynaptic node (see Section 5.3.2). This delay corresponds to the

axonal and dendritic transmission delay of real neurons (Koch, 1999).

When the presynaptic spike reaches the postsynaptic unit, the postsynaptic potential (PSP)

jumps to a maximum value, i.e., in our simulation this value is set to 1. Afterwards, it

decays exponentially towards the resting value, with a rate being given by the time constant
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τm. In our model, the postsynaptic potential εij is described as a function of the difference

s = t− t(f)
j − d :

εij(s) = exp(− s

τm
)H(s) (4.3)

with

H(s) =

 1, if s ≥ 0,

0, otherwise,
(4.4)

where t is the time of consideration, t(f)
j is the time of the presynaptic node firing and d

is the delay on the connection. The Heaviside function sets the postsynaptic potential to a

null value, for any time moment t that precedes the arrival of the presynaptic spike, that is

t < t
(f)
j + d. Note that in our implementation the postsynaptic potential can only take pos-

itive values. Negative values of the postsynaptic potential, corresponding to the inhibitory

synapses, are obtained through the multiplication of the PSP value by a negative weight

value.

The decay of the postsynaptic potential with a rate given by the membrane time constant

τm reflects the attenuation with time of the synaptic inputs in the biological neuron (see Sec-

tion 4.1). The choice of this parameter has a significant effect on the way multiple synaptic

inputs are integrated in time (see below).

Temporal summation of postsynaptic potentials

A single synaptic input is rarely sufficient to generate an action potential. The response

of a neural cell is usually determined by the way it integrates multiple synaptic inputs.

The basic arithmetic that dendrites of a real neuron compute is still a matter of controversy

(Poirazi and Mel, 2000). Both linear and nonlinear interactions between synaptic inputs in

the brain have been described by neurophysiological experiments (Cash and Yuste, 1999;

Koch, 1999) and explored computationally with different formalisms (Rall, 1977; Mel, 1992).

In SpikeNNS, we consider that both excitatory and inhibitory inputs accumulate linearly in

time.

The total synaptic input to a hidden neuron i at some moment t is given by the contribution

of all previous spikes of the presynaptic neurons (see Figure 4.5). The set of presynaptic

neurons to the node i is Γi = {j | j is presynaptic to i}. The set of all firing times of the

80



Chapter 4: Spiking neural model

Figure 4.5: The presynaptic contribution to the membrane voltage V (t) of neuron i. Each
presynaptic neuron j in Γi emits a series of spikes Fj with firing times t(f)

j . Neuron i com-
putes the weighted sum of the decayed PSPs. If the sum exceeds the threshold then an
output spike is generated.

presynaptic node j is given by Fj = { t(f)
j |Vj(t

(f)
j ) = Θ}. In SpikeNNS, a limited number

of spikes per neuron are stored (e.g., a maximum of 10 spikes/neuron were stored for the

simulation run in Section 6.1).

In our model, the slope of the postsynaptic potential curve is negatively correlated with the

value of the membrane time constant τm (see Figure 4.4a). That is, for large values of τm,

the postsynaptic potential persists longer and it allows the temporal summation of inputs

that produce in this way, an aggregate PSP larger than would be elicited by an individual

input. The neural threshold Θ and the membrane time constant τm represent the principal

parameters in determining how many excitatory inputs are needed for a neuron to fire. For

example, the choice of a membrane time constant τm = 5 (the blue graph in Figure 4.4a)

causes an exponential decay of the postsynaptic potential from the maximum value to 0,

in about 10 ms. This relatively slow decay of the postsynaptic potential curve favors the

significant summation of the synaptic inputs which arrive in a time window no larger than

4 − 5 ms. For instance, given the above value of the τm, in the simulations run in Chapter

6, the threshold values were set so that, at least three synaptic inputs (e.g, most commonly 4

or 5 inputs) were necessary for a postsynaptic spike to be emitted.

4.3.3 Refractoriness

After emitting the spike a node enters a refractory period. In the SRM0 model the neuron

behavior in the refractory period depends only on the last firing moment ti. This means
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Figure 4.6: Refractory function in SpikeNNS. The Parameters m = 0.8 and n = 3. See in text
for the meaning of these values.

that the effects of any previous own spikes are discarded. Gerstner (1999) referred to this as

the ’short-term memory’ approximation, that is, the neuron remembers only its most recent

firing. The approximation can be considered correct if the intervals between two spikes

are much longer than τm. This would make the influence of previous own spikes on the

current refractory behavior, negligible. The refractory period is described as a function of

the difference u = t− ti and is modeled by the equation:

ηi(u) = − exp[−um + n]H′(u) Θ. (4.5)

with

H′(u) =

∞, if 0 ≤ u < 1,

1, otherwise
(4.6)

where Θ is the neural threshold andm and n are arbitrary parameters which adjust the slope

of the decay curve (see Figure 4.6) (formula adapted after Sougné, 1999).

After a spike emission, the biological neuron behavior is characterised by the existence of

two periods. First, there is an absolute refractory stage, while no further action potentials

can fire. This is followed by a relative refractory period when it is difficult, but not impos-

sible to generate an action potential (Section 4.1). In the neural model described here, the

absolute refractory period lasts 1 ms, during which the Heaviside function (Equation 4.6)

maintains the value of the η kernel at −∞ (see Figure 4.6). The duration of the relative re-

fractory period depends on the values of the parameters m and n. In Figure 4.6 these value

are set so that the average inter–spike value is 10 ms.
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4.3.4 Coding of the input patterns

When computing with temporal patterns in a network of spiking neurons, the input and

output to the model is represented by vectors of time series, instead of vectors of analogical

numbers, as in conventional neural network models (Maass, 1999). In our implementation,

an input pattern consists of a series of firing times Fj of the input units j that encode the

training values, as explained below.

The latency code described in Section 4.2.2 represents analog information through differ-

ences in the firing times of the neurons. Here, we define a coding scheme, where the analog

values xj can be encoded by the time advances of the input spikes to a reference time Tint

(see Hopfield’s formulation in Section 4.2.2). Figure 4.7 shows an input pattern represented

by the spikes on five input units. An input spike has a large contribution on a postsynaptic

node potential if it has just reached the node and a smaller effect if its arrival is less recent.

Given equal transmission delays d, a vector of real values (x1, ..., xn) with xj ∈ [0, 1] can

be encoded in the postsynaptic potentials of the input spikes as a function of the difference

between an arbitrary value Tint and the input units firing times t(f)
j :

xj = ε(Tint − t(f)
j − d) = exp (−

Tint − t(f)
j − d)
τm

). (4.7)

Let us explain how a network can be trained with input values coded by this scheme. For

instance, if the firing time of an input unit is t(f)
j = 2 ms, the delay value is set to d = 2ms,

Tint = 10 ms, and τm = 5 ms, then a hidden unit receives a signal xj = 0.4, given by the

postsynaptic potential in Equation 4.7 (see first PSP value in Figure 4.7a). This value can be

further used for the training of the hidden layer weights. For instance, in a self-organization

process, weights are adapted as a difference between the input (ε = 0.4) and the current

value of the weight. Accordingly, the weights of a winner for this input will learn the value

of 0.4. Note that, learning on the synapses of spiking neurons depends also on their output

values, in a different way that it is the case for the continuous, rate–coding neurons. That

is, learning is applied only to the excitatory synapses of those neurons, which fire. The

later a hidden neuron fires, the smaller is the contribution of the input values on its afferent

synapses change (see also Section 5.2.3).

In SpikeNNS, two coding schemes are used: time coding and coding by synchrony. Which

scheme is used depends on the way the input patterns are specified and on the operation

mode of the neurons (see Section 4.2.3). That is, neurons can either operate as integrators,
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Figure 4.7: An input pattern consists of a train of spikes emitted at the times t(f)
j . (a) A time

coding scheme, where values are encoded in the spikes relative latencies to the Tint moment.
In left the time advances of the input spikes are shown, computed as Tint− t(f)

j −d. The PSP
values represent the real values seen by the hidden units and which are used in training the
synaptic weights. (b) Coding by synchrony, where the hidden neurons spike by detecting
the coincidence in the firing of the input units.

by summing up the input values that arrive in a large time window, or they can function as

coincidence detectors, by detecting the synchrony in the input spikes emission. Accordingly,

the temporal coded inputs can be specified in two ways.

Firstly, real values can be encoded as described above, by using the spike time advances to a

fixed reference time Tint. This method offers complete control over what values are encoded

and received by the hidden units. Secondly, information can be encoded in the synchronous

emission of the input spikes. This means that the hidden units can detect the coincident

firing of a subset of input units. It represents a means to generate hidden units selectivity

for a neural event that is characterised by the correlated firing of a set of presynaptic units.

With regard to how the time–coded input patterns are effectively implemented and applied

in SpikeNNS, it consists of the following scenario. The series of firing times Fj correspond-

ing to one pattern read from the input file, are converted in series of 1′s and 0′s that are

applied to the hidden network at the times t(f)
j . All the 1 values representing input spikes

with the same timing t(f)
j are collected in a subpattern with that time stamp. By doing this, a

single time–coded pattern generates as many subpatterns as different firing times are in the
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original input pattern.

4.4 Learning with spiking neurons

Part of the work carried out on this thesis has focused upon the implementation of an exten-

sion of the SNNS simulator (Stuttgart Neural Networks Simulator) to support simulations

with spiking neurons (see Chapter 5). The new simulator version, SpikeNNS, implements a

general training framework adapted to the characteristics of learning with spiking neurons

and temporal coded input patterns (see Section 5.2.3). By creating a general learning frame,

the simulator is not limited to the learning rules currently existent in SpikeNNS, but it can

be easily extended with any learning functions.

The current version of the simulator implements several learning rules for a self–organization

process with spiking neurons. Issues of learning with spiking self–organizing maps have

been discussed in Section 2.2.5. The adaptation rules implemented in SpikeNNS for the

self-organization of a spiking neural map with plastic lateral synapses are described in Sec-

tions 6.1 and 6.2 along with the presentation of the simulations performed.

In Section 2.2.5, we emphasized the crucial role played by the horizontal connectivity in

development in the real and artificial networks. Accordingly, significant modeling efforts

have been dedicated to the integration of learning in lateral synapses in the models of cor-

tical functions. Most of these attempts focused on exploring Hebbian–like association rules

(see Section 2.2.5). More recently, experimental investigations shown that the relative tim-

ing of the pre– and post–synaptic neurons plays an important role in determining whether

a synapse is potentiated or depressed (Markram et al., 1997; Zhang et al., 1998). Newer

formulations of the Hebbian rule take into account the temporal order of spiking, so that

potentiation occurs only if the postsynaptic excitatory potential precedes the firing of the

postsynaptic neuron by at most 20 ms. Depression is the rule for the reverse order (Song et

al., 2000). In the following, we describe briefly a number of learning rules that illustrate dif-

ferent ways to compute and learn with spiking neurons. Some of them will be implemented

in future work.

Learning on neural firing rates. Choe and Miikkulainen (2000) proposed an adaptation of

the lateral weights according to the Hebbian rule and based on the spiking rates of leaky
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integrate-and-fire neurons:

wij(t) =
wij(t− 1) + α · ViXj

N
, (4.8)

where wij(t) is the connection weight between neurons i, j, wij(t − 1) is the previous value

of the weight, α is the learning rate. Vi and Xj are the average spiking rates of the neurons

computed after the network has reached a stable rate of firing. N is a normalization factor

that prevents the excessive increasing of the weights. This learning algorithm was used

successfully for image segmentation and contour binding by the synchronization of neural

group activity (Choe and Miikkulainen, 2000).

Learning on the spike times synchronization. Sougné (1999) proposed a neurocomputa-

tional model for binding and inference that solves the binding problem by means of oscil-

lation synchrony. Learning of the connection weight between two nodes i and j is defined

by Equation 4.9. This expresses the fact that with every synchronous firing of the nodes, the

weights wij as well as wji are increased by a constant value c:

∆w+
ij =

c, if t(f)
j = t

(f)
i

0, otherwise.
(4.9)

The delays of the connections also undergo learning, so that at each synchronous firing of

the nodes i and j, the delay dij as well as dji are set to a fixed value, which favors the

synchronization of neurons at a certain frequency of oscillation. A decrease of the connection

weights (i.e., forgetting of the binding) occurs if the two nodes do not fire inside a certain

time cycle (i.e., up to 250 ms). This type of learning is successfully used to implement a short

time memory, binding on multiple instantiation and with multiple predicates.

Spike–timing dependent plasticity (STDP). Song et al. (2000) proposed an adaptation of

the Hebbian learning rule, which takes into account the relative timing of the pre- and post-

synaptic action potentials. The synaptic modification arising from a pair of pre- and post-

synaptic spikes separated by a time interval ∆t is given by the function F (∆t):

F (∆t) =

 A+exp(∆t/τ+), if ∆t < 0

−A−exp(−∆t/τ−), if ∆t > 0
(4.10)

where A+ and A− determine the maximum amounts of synaptic modification and the pa-

rameters τ+ and τ− determine the ranges of pre–to–post synaptic interspike intervals over

which synaptic change occur. Strengthening of a synapse occurs for pre–synaptic action

potentials which precedes postsynaptic firing by no more than 50 ms. Weakening of the
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synapse is produced by a presynaptic action potential that follows the postsynaptic spike.

The main role of this form of STDP is to strongly weaken causally ineffective inputs, hence,

synaptic weakening dominates over synaptic strengthening.

Spike–timing learning has been mostly implemented for excitatory synapses, due to the rich

experimental data showing how potentiation and depression of these synapses occurs in

the brain. Conversely, there is much less neurobiological data from which to conceptualize

the modification rules for inhibitory synapses, and consequently fewer cognitive models

account for the plasticity of inhibitory synapses (see Roberts, 2000; Soto Trevino et al., 2001).

Learning in the inhibitory synapses. In SpikeNNS learning in the inhibitory synapses is

implemented according to the rule proposed by Levy and Desmond (1985). The authors

proposed that presynaptic activity paired with postsynaptic inactivity leads to the potenti-

ation of the active inhibitory synapse, while postsynaptic activity is required (indifferent of

the presynaptic activity) for a loss of strength of the inhibitory synapse (see also Section 6.1).

More recently, experiments in the mormyrid electric fish have suggested that pairing delays

between pre- and post-synaptic spikes that cause excitatory synapses to decrease cause the

inhibitory synapses to increase. Thus, if the postsynaptic inhibitory potential follows the

postsynaptic spike within a time window of about 50 ms, than the inhibitory synapses is

potentiated (Roberts, 2000).
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