
Chapter 3

Visuomotor development

Sensorimotor coordination has been an active research topic for both neuroscience and arti-

ficial intelligence over the last decade. The integration of sensory information for movement

guidance represents perhaps the most basic operation that a nervous (or artificial) system

must solve (Churchland and Sejnowski, 1992). Despite exploring the same problem, studies

carried out in these fields have arrived at different solutions. These differences arose mainly

due to the divergent research goals.

Robotic models, rather than revealing how nervous systems attain sensorimotor control,

demonstrate that many schemes are capable of implementing sensorimotor coordination

and focus on the accuracy of controlled behavior, often without considering the biological

plausibility of the resulting implementation (Kalaska, 1995). Nevertheless, their capabilities

are still behind the adaptive motor abilities of biological organisms. Conversely, significant

progress has been made in neuroscience towards understanding the biology of sensorimotor

transformation in terms of integrative mechanisms that function at the single cell level or in

small–networks of neurons (for a review see Kalaska et al., 1997; Snyder, 2000).

Several attempts were made recently to create an integrative framework that links neuro-

physiological and computational aspects of sensorimotor coordination. The aim is to pro-

vide a conceptual scheme that is readily implementable, to be used for the biological mod-

eling of visually guided movements (Bullock et al., 1995; Burnod et al., 1999). The purpose

of this chapter is to describe a general theoretical and modeling framework of sensorimo-

tor development, inspired by these recent neurophysiological findings and computational

theories.
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Section 1 introduces the main research themes on biological sensorimotor coordination.

First, a general description of the classical approach to solving the sensorimotor mapping

problem is presented. Following this, we present a number of alternate hypotheses that have

recently been proposed. Section 2 focuses upon the neurobiological mechanisms underpin-

ning visuomotor mapping for arm reaching. Neurophysiological evidence is presented for

the hypothesis of progressive match of visual to motor information, through intermediate

spatial representations and supported by multimodal combinatorial properties of neurons.

Finally, Section 3 reviews a number of biologically inspired models of visuomotor coordina-

tion development.

3.1 Sensorimotor coordination in biological systems

The general understanding of the sensorimotor coordination problem is that it represents

a mapping of signals from various sensory modalities onto an appropriate set of efferent

motor commands addressed to skeletal muscles or robotic actuators (Massone, 1995). A

number of different aspects contribute to the difficulty of this task. First, investigations of the

neural circuits involved in this process in the primate brain are faced with significant issues

of complexity. This is because, it is not obvious how the perceptual areas are connected with

the motor regions for sensory information transfer (Glickstein, 2000; Kandel et al., 2000).

Second, in order to guide motor actions, the visual signals undergo a translation into motor

outputs, which is commonly described as a non–linear coordinate systems transformation.

Solving this mapping is again a non–trivial problem (Pellionisz and Llinas, 1980; Hildreth

and Hollerbach, 1985; Jordan, 1996).

As a result, significant efforts in the last few decades have been devoted on one hand, to

identifying the connections between sensory and motor areas in the brain (Tanne et al.,

1995; Glickstein, 2000) and on the other hand, to developing various conceptual and mod-

eling schemes that can solve the coordinate system transformation problem (see Kalaska et

al., 1997; Snyder, 2000). These research directions are briefly discussed in the first part of

this section, referred to, as the classical paradigm. Following this, we introduce three new

theories, which refine the way researchers look at the visuomotor mapping problem.
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3.1.1 The classical approach

Coordinate system transformation and the inverse kinematics problem

The concepts of reference frames and coordinate systems are used widely in the study of eye

and limb movements. A reference frame is invoked when an experimental result is described:

for example, describing the position of eyes relative to the head (a head-fixed frame of ref-

erence) (Soechting and Flanders, 1995). A coordinate system represents the set of axes fixed

to the frame of reference, used to make the measurement (i.e., Cartesian coordinates). There

are three main types of coordinate systems: end-point coordinates (e.g., retinal or Cartesian),

generalized coordinates, that are independent variables describing the dynamics of a system

(e.g., joint angles), and actuator coordinates dependent on how motor control is implemented

(e.g., muscle forces) (Mussa-Ivaldi, 1995). For each coordinate system there are several pos-

sible reference frames: eye–centered, head–centered, limb–centered (Andersen et al., 2000).

The problem of visuomotor coordination was first described as a coordinate system transfor-

mation by Pellionisz and Llinas (1980). Given the fact that sensory input and the motor out-

put vectors are represented in different coordinate systems, the transformation of sensory

signals to motor commands can be described as matrix multiplication. And this represents

the standard technique for solving the geometrical problem of going from one coordinate

system to another (Pellionisz and Llinas, 1980).

The transformation of one class of coordinates to another is a nonlinear mapping. The trans-

lation from Cartesian coordinates to the joint angles required to move the arm to the target

is referred as the inverse kinematics problem. The mapping from desired joint angles to mus-

cle activities represents the inverse dynamics problem. The opposite process, which computes

first the motor commands and translates them into hand movements, is referred as the for-

ward kinematics. A biological/artificial system that has to perform the transformation from

extrinsic to intrinsic coordinates must learn the spatial transformations (i.e., the inverse kine-

matics) and the muscles dynamics (i.e., inverse dynamics) (Ghez et al., 2000).

A common approach to sensorimotor learning in artificial systems is to learn first an inverse

model, namely the transformation from desired movements to motor commands, which

will further be used to control the end–effector (Massone, 1995; Jordan, 1996). There are

various methods by which such an inverse model can be learned, mainly based on error

correction mechanisms, which translate errors expressed in the Cartesian (visual) coordinate
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system into the motor command or other coordinate system errors (for a review see Jordan,

1996; see also Section 3.3.2).

Nevertheless, it is an open question whether biological processes for inverse kinematics

or inverse dynamics exist, or whether the nervous system effectively computes the spatial

error between hand and target (Hildreth and Hollerbach, 1985). Despite the aptness of the

coordinate system transformation concept as a description of neurophysiological processes,

the question has been raised whether or not it has a biological relevance (Robinson, 1992;

Kalaska, 1995; Burnod et al., 1999). Robinson (1992) argues that coordinate systems are

a human invention for measuring spatial relationships and they are irrelevant for neural

networks performing visuomotor transformations:

Mathematical descriptions of what a system is trying to do are of little help to the
neurophysiologist trying to understand how real neurons do it (Robinson, 1992,
page 48).

Recently, a number of researchers acknowledged that even though neurophysiological data

suggests that the brain does not literally implement this formalism, the metaphor of coordi-

nate transformation does have heuristic value (Kalaska, 1995; Soechting and Flanders, 1995;

Kalaska et al., 1997).

The connectivity problem

From the neurophysiological perspective, the sensory–to–motor transformation represents

(partially) a problem of identifying the anatomical ways which connect the visual and motor

areas. Since the primary sensory and motor cortical areas had been identified by 1900, most

researchers have assumed that a series of cortico–cortical fibers must exist to link the per-

ceptive and motor cortex for the sensory guidance of movement (see Glickstein, 2000). As

Kandel and colleagues puts it, there exists a separation between motor and sensory systems

and integration needs to be done:

Purposeful action is possible only because the parts of the brain that control
movement have access to the ongoing stream of sensory information in the brain.
The integrative action of the nervous system depends therefore on the interac-
tion between motor and sensory systems (Kandel et al., 2000, page 651).

The way visuomotor coupling is attained is particularly difficult to observe in the primates

brain, due to the complexity of inter–neural circuits that stand between the sensory and

motor neurons:
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Figure 3.1: Cortical neural circuits allowing visual inputs from VI to be transformed into
motor output in MI (adapted after Rossetti et al., 2000). The dorsal stream is represented in
green, the ventral ’what’ stream is shown in red and their possible interactions are drawn
in blue. Legend: AIP: anterior parietal area; BS: brainstem; Cing: cingulate motor areas; d: dorsal;
FEF: frontal eye field; Hipp: Hippocampus; LIP: lateral intraparietal area; M1: primary motor cortex;
MIP: medial intraparietal area; MST: medial superior temporal area; MT: medio-temporal area; PM:
premotor cortex ; SC: superior colliculus; SEF: supplementary eye field; SMA: supplementary motor
area; STS: superior temporal sulcus; TE: temporal area; TEO: temporal-occipital area; v: ventral; V1:
primary visual cortex; VIP: ventral parietal area.

...between the sensory receptors detecting signals and the motor neurons inner-
vating the muscles are interneurons. Most of the answer to the problem of sen-
sorimotor control resides in how these interneurons connect up to form circuits,
and how these circuits are hooked up to produce behavior suited to the perceived
situation (Churchland and Sejnowski, 1992, page 331).

Today, there is clear evidence that multiple-synaptic cortico-cortical pathways connect the

primary visual and motor areas by way of the dorsal stream (Goodale and Milner, 1992; Tanne

et al., 1995). Subcortical routes may also be involved in the visuomotor transformation pro-

cess. An example is the route from visual to motor systems through the pons and cerebellum

(Glickstein, 2000).

The dorsal pathway projecting from the primary visual cortex (V1) through the dorsal ex-

trastriate visual area V3 and middle temporal area (V5/MT) to the superior temporal and

parietal cortex is concerned with the perception of movement and spatial information (see
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the green stream in Figure 3.1). Within the dorsal stream there are several pathways that are

responsible with the regulation of reaching movements, grasping of the objects, or move-

ments of the eyes as they follow a moving object (Andersen et al., 2000).

The connectivity problem is illustrated in Figure 3.1, which points at the complexity of the

dorsal stream cortical circuits involved in the transformation of visual inputs into motor

output (figure adapted from Rossetti et al., 2000). The dorsal stream (in green) is pictured

along with the ventral ’what’ stream (in red) and the substrate of their interactions is also

shown. Within the dissociation paradigm, the study of Rossetti and colleagues explores the

possible support for interaction between the vision and action systems.

To conclude, the biological theories outlined above helped to create a paradigm of a neatly

partitioned brain into areas for perception and action. This in turn, influenced the way

sensorimotor mapping problem was defined and addressed (i.e., as a transformation prob-

lem). It is believed in this thesis that the description of biological visuomotor development

in terms of the inverse kinematics problem and coordinate system transformation cannot

be taken literally, but rather as a metaphor of how the motor system processes information

(Kalaska, 1995). It is also believed that understanding of how basic visuomotor coupling

is implemented in the brain does not necessarily involve finding the connecting pathways

from the primary visual cortex to the primary motor cortex.

The progress achieved in understanding the various functions of the neural populations

placed along the dorsal stream and involved in movement control has changed the way re-

searchers think about the sensory to motor transformation (Caminiti et al., 1996; Burnod et

al., 1999). For instance, while reviewing neural information processing in those brain areas

involved in the generation of sensory guided movements, researchers observed that there is

not such a distinct line between sensory and motor processing in the brain (Goodale, 2000;

Rossetti et al., 2000). In the remainder of this chapter, we focus upon the biological and com-

putational hypotheses brought forward by some new ideas about visuomotor coordination

development.

3.1.2 New theories of visuomotor coupling

This section presents new approaches of visuomotor mapping problem from three perspec-

tives: neurobiological, computational, and evolutionary. The first of these frameworks is

build upon neurophysiological data from studies of visually guided arm–movements in
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monkeys. This research strand provided new insights into the organization of the corti-

cal areas underlying reaching. Firstly, the cortical control of reaching is distributed along

several areas in the parietal and frontal cortex (Johnson, 1992; Colby and Duhamel, 1996).

Secondly, recruitment of neural populations from these areas for computation of motor com-

mands involves both serial and parallel mechanisms (Caminiti et al., 1996; MacKay, 1996).

Thirdly, the parieto–frontal network has a gradient architecture which favors the link of sen-

sory and motor signals into a common hybrid reference frame (Johnson et al., 1996; Caminiti

et al., 1998). Fourthly, the common frame is the eye–centered representation used in both

ongoing and intended arm and eye movements (Andersen et al., 1997). Fifthly, neural cells

from the parietal and frontal areas possess combinatorial properties by which they integrate

information coming from various sources (Wise et al., 1997; Caminiti et al., 1998).

These findings have led to the reconsideration of the nature of visuo–to–motor transforma-

tion:

• The computational demand for reaching is met by operations that align distributed

sensory and motor representations through unsupervised means. The nonlinear map-

ping is performed gradually, sustained by the combinatorial properties of individual

neurons and the gradient architecture of the parieto–frontal network (see Section 3.2).

Another evolving research stream focuses on the use of computational modeling in an at-

tempt to understand the mechanisms of adaptive behavior in autonomous agents (Arbib,

1987; Cliff, 1990). Research carried out on understanding simpler animals behavior indi-

cated that all sensorimotor systems interact with their immediate surroundings by forming

a closed loop with the environment (Cliff, 1995). It was suggested that:

• Sensorimotor pathways generating adaptive behavior might not be so precisely clus-

tered into representation–transforming modules. Hence, one might try to model and

understand entire sensorimotor pathways that are complete sequences of neural pro-

cessing from the sensory input to the motor behavior (presented in Section 3.1.2).

Finally, whilst studying the interplay between eye and hand movement during reaching

or manipulation of objects, researchers have realized that an essential collaboration may

exist between oculomotor and limb motor control systems (Engel et al., 2000; Soechting et

al., 2001). These behavioral and electrophysiological findings on eye–hand coordination

suggested the hypothesis:
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• Hand and eye movements are subject to similar control mechanisms and gaze pro-

vides the signal for targeted limb motion (presented in Section 3.1.2).

In a summary, the developing ideas outlined above promise to advance our knowledge

of the biological and computational mechanisms of visuomotor transformation. They are

rapidly maturing and we may soon witness the emergence of a new paradigm in biological

visually guided motor control. The work presented in this thesis was partially motivated

by the attempt to bring modeling support to these somewhat radical proposals. In the fol-

lowing, the latter two theories will be briefly described in subsections below, leaving the

neurobiological mechanisms to be described in a dedicated section (Section 3.2).

The unitary nature of the sensorimotor cycle

One might assume, that being ”probably the most basic operation a nervous system evolved

to solve” (Churchland and Sejnowski, 1992) the sensorimotor coupling is implemented by

some basic, primitive mechanisms on which sophisticated structures, like a primates brain,

have built sensory guidance of movement (Goodale, 1996; see also the modeling of the entire

sensorimotor pathways in computational neuroethology, Cliff, 1995).

The concept of a unitary sensorimotor cycle as a motor primitive for the generation of adap-

tive behavior in animals (and humans) is not recent. For a long time in biology, the reflex arc

was assumed to play a central role in the production of complex sequences of movements,

which were understood to be formed by the combination of simple reflexes (Kandel et al.,

2000). More recently, computational neuroscience scholars in the search of primitives for

sensorimotor development have studied and emphasized the importance of primitive and

postural reflexes for infant development of motor control (Kuniyoshi and Berthouze, 1998;

Metta et al., 1999). Metta and colleagues (1999) studied the issue of sensorimotor develop-

ment within an artificial system and suggested that simple initial behaviors, such as motor

reflexes and sensory-triggered motions, can be seen as computational building blocks. That is,

they can guide the learning of more sophisticate behaviors and act as a bootstrap procedure

for the whole system (see Section 3.3.1).

Further evidence for the unitary nature of sensorimotor pathways came from experimen-

tal and modeling studies of visually guided behaviors in less intelligent animals (such as

amphibians and arthropods) (Arbib, 1987; Liaw and Arbib, 1993) and flies (Franceschini et

al., 1992). In simpler nervous systems it is more evident that perceptive capabilities of an

46



Chapter 3: Visuomotor development

organism have evolved in close relation with the achievement of specific motor goals. As

Goodale puts it:

Vision did not evolve to enable organisms to perceive. It evolved to provide
distal control of their movements (Goodale 2000, page 365).

Neurophysiological data from simple vertebrate systems shows that different classes of vi-

suomotor behavior rely on independent neural circuits specialized for generating an adap-

tive behavior to a certain sensory stimulus. For instance, in amphibians different circuits are

involved for visually guided prey–catching and visually guided obstacle avoidance. Simi-

larly, in rodents different subcortical pathways exist for control of orientation to food and

novel stimuli and for the avoidance of obstacles during locomotion (Goodale, 1996). These

observations suggest once more, that in a simple vertebrate’s nervous system, vision and

action are not so clearly partitioned in representation–action modules.

However, the complexity of mammals’ lives has demanded more flexible organization of

the circuitry, than that observed in simple vertebrates. According to Goodale (1996), this has

been achieved by the development in the mammals’ brain of a special system for perception,

and particularly by the sophistication of the dorsal stream responsible for the perception–

action loop. The ancient subcortical visumotor circuits that are shared by the monkey’s

brain with simpler vertebrates have become modulated by the more recently evolved layer

of cortical control. This layer has evolved to make more adaptive motor behavior possible.

The role of the inter–neural circuits in diversifying the motor behavior and allowing more

complex response patterns has been explored also by modeling studies of the visuomotor

pathways in the lamprey (Churchland and Sejnowski, 1992).

The classical view, as outlined in Section 3.1.1, defines the visuomotor mapping problem as

the task of finding the path between the sensory and motor systems which implements the

coordinate system transformation. The lesson from neuroethology is that perception–for–

action is a crucial adaptive operation, which is implemented in less sophisticated nervous

systems as unitary sensorimotor pathways (circuits). In this thesis, we consider an incre-

mental approach to system construction. From this view, we believe that the development

of new specialized modules or the increased sophistication of existing circuits preserves the

unity of the perception–action cycle as a built–in, inherited mechanism.
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Common computational programs for eye–hand movements

Within the visuo–motor mapping problem, special attention has always been given to eye–

hand coordination. That is, because of its fundamental relevance to the organization of hu-

man motor skills and to the understanding of the perception–action relationship (Caminiti

et al., 1992). Within this field, much consideration has been given to the possible interactions

between the systems controlling the eye and arm. For a long time, the common assumption

was that eye and arm movements may have little in common due to the fact that the eye is

comparatively simple and predictable mechanical object, in contrast with the complexity of

the arm system (Hildreth and Hollerbach, 1985). The traditional view of eye–hand coordi-

nation was that the central nervous system uses visual information (retinal or gaze angles)

to build up representations of the environment and to guide limb movement (Kandel et al.,

2000).

Recently, it was shown that for eye–hand coordination during manipulatory tasks, the gaze

is well ahead of the hand and the object. This suggests that gaze supports hand movement

planning (Johansson et al., 2001). Furthermore, Engel et al. (2000) demonstrated a similarity

in the response of eye and manual tracking to a change in the direction of target motion.

As a result, they proposed that hand and eye movements are subject to common control

mechanisms and that gaze (i.e., extraretinal information) provides the signal for targeted

limb motion. This hypothesis is also supported by neurophysiological studies which reveal

that arm movements are coded and updated in eye-centered coordinates (Andersen et al.,

2000; Snyder, 2000; see also Section 3.2).

These findings gave rise to a computational hypothesis about the way gaze signal might

be ’re-used’ for arm movement control (Scassellati, 1998; Reilly and Marian, 2002). It is

known that, in certain species, the auditory or visual signals produce an alignment of the

head to the source of the signal. As a result, the motor head map is used to generate an

appropriate motor behavior (Lazzaro et al., 1993; Kolesnik and Streich, 2002). Inspired by

this idea, models of sensorimotor transformation have been built to simulate the sensory

guided behavior of amphibians or flies (Franceschini et al., 1992; Liaw and Arbib, 1993).

The new hypothesis is that such a process might also operate in the case of motor control

in primates, and to generate the neural program for arm movement the system might make

use of the eye motor program (Metta et al., 1999; Reilly and Marian, 2002). The significance

of this thesis resides in its capacity to support and eventually implement the development
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of visually–guided reaching on the priori achieved foundation of motor programs for eye–

movements (see discussion in Section 7.1.4).

3.2 Neurobiological bases of visuomotor coordination

In Section 3.1.2 we made the case that sensorimotor coupling is a fundamental operation that

a neural system has to implement. While the unitary nature of the perception–action cycle

is a ubiquitous feature of simple nervous systems, the sophistication of cortical circuitry in

the primate’s brain poses the problem of where and how perception and action are inte-

grated. In this thesis, we address the issue of direct sensory control of action, defined as the

immediate motor response evoked by the visual activity that codes the task parameters. We

will try to argue that despite the sophistication of the circuitry, this process relies on a series

of basic computational mechanisms. In this section, the most recent experimental data on

the neurobiology of reaching movements is reviewed in search of the basic computational

building–blocks of perception–action coupling.

Experimental results on arm control indicate that no cortical area is uniquely responsible for

reaching (Andersen et al., 1997; Kalaska et al., 1997). The distributed representation of sen-

sory and motor information and the co–existence of several levels of representation suggest

that multiple cortical and subcortical sites simultaneously interact to produce an effective

reaching to visual targets (Kalaska et al., 1992; MacKay, 1995; Caminiti et al., 1998). This

cooperative interaction favors the idea of a more parallel organization of visuomotor trans-

formation. This contrasts with the classical view of a sequential cascade of anatomically

segregated neural populations, each generating a serial representation to be integrated in

the next stage (see Figure 3.1, Kalaska et al., 1992).

Based on the fact that visually derived information is available in motor areas (Johnson

et al., 1999) and signals coding the intention of movement have been observed in visual

areas (Andersen et al., 1997), the visuomotor mapping can be realized by the simultaneous

(as opposed to serial) engagement of neural populations distributed along the frontal and

parietal lobes. These cell populations combine in a nonlinear way information coming from

different input sources and are able to provide an output in a different coordinate system

(Salinas and Abbott, 1995). In other words, visuo–to–motor mapping can be realized at

multiple stages, in a widely distributed manner, and based on the activity of integrative

mechanisms that function at the level of single cell or small–networks of neurons. In the
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following, we shall see how these mechanisms are implemented in the brain for the control

of arm–reaching movements.

3.2.1 Gradient architecture of parieto–frontal network

Visually guided reaching can be achieved through a combination of different sources of in-

formation, relating to target location, gaze direction, arm position and movement direction.

Signals about the location of the target on the retina, and the position and movement of the

eye and the arm appear to be distributed and co–exist in many reach–related areas from the

parietal and frontal cortices (Johnson, 1992). The parietal cortex is known to contribute to

the formation of multimodal spatial representations in different coordinate frames, while

frontal activity is related to processes involved in the selection and execution of motor ac-

tions (Kalaska et al., 1997; Flash and Sejnowski, 2001).

Recent physiological recordings in the superior parietal and the frontal lobes revealed a

gradient–like distribution of neural functional properties (Johnson et al., 1996; Marconi et

al., 2001). These findings describe a gradual rostro–caudal change of response properties

across the premotor and primary motor cortex. This change ranges within the frontal lobe

from higher–order visuospatial processes (more rostrally) to lower–order actuator–specific

signals (more caudally) (Johnson et al., 1996; Shen and Alexander, 1997). The visual–to–

somatic gradient in the frontal lobe is represented in the left part of the brain in Figure 3.2.

Johnson and co–workers (1996) found a symmetrical gradient for the superior parietal cor-

tex: arm–movement and posture related activity tended to occur more rostrally, whilst

signal–related activity was found more caudally in the medial intermediate parietal area

(MIP) (see representation of right part of the brain in Figure 3.2). Moreover, cell popula-

tions with similar response properties in the parietal and frontal areas are interconnected

by cortico–cortical projections. These links are perhaps necessary for the match of retinal-,

eye- and hand-related information during visually guided reaching (Caminiti et al., 1998;

Marconi et al., 2001).

Based on these findings, Burnod and colleagues (1999) proposed that cortical control of

reaching is distributed over a ’network of networks’ in the parieto–frontal lobes. These

networks form a visual–to–somatic gradient presented in Figure 3.2 and schematized as fol-

lows: (1) target location in retinal and eye coordinates is signaled by neurons at the caudal

and intermediate levels of superior parietal cortex and in the rostral part of the frontal lobe
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Figure 3.2: Parieto–frontal architecture with a visual–to–somatic gradient for visually
guided reaching (adapted after Burnod et al., 1999). During reaching, the visuomotor trans-
formation requires the combination of retinal (dark blue), gaze (light blue), arm/hand (green)
and muscle (yellow) signals to move the hand from position B to the target in A (foveated) or
in C (non-foveated). In right, cortical areas involved are represented. The authors grouped
these areas approximately, in three parietal regions: anterior aP, intermediate iP, posterior
pP and three frontal motor regions: anterior aM, intermediate iM, and posterior pM which
are all reciprocally connected.

(see the dark blue lines and areas in figure); (2) eye–movement–related neurons (i.e., signal

gaze direction) are distributed less caudally in the superior parietal cortex and less rostrally

in the frontal lobe (indicated with light blue in figure); (3) neurons tuned to arm position

extend more rostrally in the parietal lobe and more caudally in the frontal lobe (in green in

figure); (4) arm movement-related activity predominate in the rostral bank of the central sul-

cus (in yellow in figure). At the border of these regions, where activities related to different

signals overlap, combinatorial domains result with a role on integrating information from

different sources (see Section 3.2.3).

3.2.2 Gain field mechanisms for coordinate transformation

The parieto–frontal network described above supports a gradual mapping of visual to so-

matic information through the involvement of neural populations coding different types of

signals. In order to correctly guide motor action, the sensory signals coding retinal position
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and gaze direction must be combined, as noted in Section 3.1.1 by an operation similar to a

coordinate system transformation.

The most accepted perspective on of how this nonlinear mapping is implemented in the

brain is that it is realized in a distributed manner, with multiple coordinate systems and

reference frames forming the parietal cortex for spatial representation. Mapping of visual

signals to motor output is realized by the smooth transition of information from one refer-

ence frame (or combinatorial domain) to another (Salinas and Abbott, 1995; Andersen et al.,

1997; Caminiti et al., 1998; Snyder, 2000).

Andersen and collaborators (1997, 2000) have provided important insights on how neu-

ral circuits may implement nonlinear functions similar to coordinate transformation. They

have suggested that the transformation from retina–centered coordinates to head– or body–

centered coordinates can be understood in terms of gain fields associated with neurons in

area 7a of the posterior parietal cortex. Cells in this area receive a convergence of eye po-

sition signals and visual signals and the response of a neuron is a product of the receptive

field and the linear gain field. This multiplication implements a nonlinear function that can

be described as a coordinate system transformation.

The gain field mechanism represents space in a distributed format, allowing inputs from

multiple sensory systems with different spatial frames and outputting signals for action

in several motor coordinate frames. Several neural network models based on gain field

mechanisms have been proposed for the conversion of eye and retinal position into head–

centered coordinates (Zipser and Andersen, 1988; Salinas and Abbott, 1995), or retina (eye–

centered) and auditory (head–centered) signals into motor error coordinates (Andersen et

al., 1997).

The solution to the nonlinear mapping problem illustrated above, focuses on the formation

of distributed representations in multiple coordinate frames, by using gain field modulation.

Another modality to combine signals for arm reaching, for instance the target location and

the limb starting position is to converge them onto single cells. These then have to perform

a match of the stimulus attributes (target location) with attributes of the appropriate motor

response (joint angles to reach the target) (Kalaska et al., 1997). This approach is based on

neural combinatorial properties and it is presented in the section below.
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3.2.3 Combinatorial properties of neurons

The combinatorial properties of neurons have been observed in many areas of the parietal

and frontal lobes (for a review see Wise et al., 1997; Caminiti et al., 1998). For instance,

discharge rates of neurons in premotor areas and in the 7m parietal area co-vary with the

direction of both eye and arm movement (Kalaska et al., 1997). Parietal cells in V6a (dorso-

medial part of the parieto–occipital area) exhibit complex interactions between visual inputs

and motor functions (Battaglia-Mayer et al., 2000). Moreover, about 40% of neurons in the

premotor ventral area are modulated by the direction of gaze (Mushiake et al., 1997).

Based on these findings, Burnod and coworkers (1999) attempted to explain the biology

underpinning sensorimotor transformation in terms of combinatorial domains and matching

units. The authors proposed that the gradient architecture of the parieto–frontal network

(see Section 3.2) favors the functional overlap of the regions coding for different reach–

related signals (i.e., retinal, gaze, arm position, and muscle output). Signals from different

sources along the visual–to–somatic axis can be matched within three combinatorial do-

mains (see Figure 3.2):

• The anterior parietal aP and posterior frontal pM domain combines information on

muscle dynamics with positional and directional arm information (c-domain1 combines

yellow and green signals in Figure 3.2).

• The intermediate parietal iP and frontal motor area iM domain relates information

on movement direction with gaze positional and directional signals (c-domain2 combines

green and light blue signals),

• The posterior parietal pP and anterior frontal motor pM domain relates positional and

directional information of gaze and arm with visual inputs on the retina (c-domain3 com-

bines light and dark blue signals).

Within each domain, information can be combined along two other axes: the position–

direction axis and the sensory–motor axis. It is well known that directional information is

encoded in the activity of neurons in all reach–related areas from the parietal and frontal

lobes (Georgopoulos et al., 1993; see Section 2.1.3). Hence, on the position–direction axis,

processing units are tuned to both position and direction. That is, they respond maximally

to movement in a certain direction and at a certain position in space.
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Finally, neurons sharing the same combinatorial domain and similar position and direc-

tional tuning properties may have different temporal relationships to the signals relevant to

reaching. This results in the existence of four types of units on the sensory–motor axis: sen-

sory units that are timed–locked to sensory signals in all domains; motor units, time–locked

to motor events; matching units, which learn correlation between sensory and motor signals;

and condition units, which store correlation between sensorimotor signals and reinforcement

contingencies.

The progressive match framework for visuomotor mapping

In our view, one of the best-articulated proposals of unsupervised visuomotor learning for

arm-reaching was described in Burnod and co–workers (1999). This model exploits the gra-

dient nature of the parieto–frontal architecture together with the combinatorial properties

of neurons. In particular, it proposes that sensorimotor mapping is accomplished in a pro-

gressive manner, by the gradual involvement of sets of matching units belonging to differ-

ent combinatorial domains. Synaptic learning results from the increase of the connection

strength between two units, due to their repeated co–activation (e.g., Hebbian learning).

Below, we describe what in their view, are the first four stages required for the alignment

of hand direction (in motor coordinates) toward the target position (in visual coordinates).

Each stage corresponds to learning in different sets of matching units (for the description of

the complete scenario see Burnod et al., 1999):

• Motor babbling. When the monkey moves the hand, co–activations in the first combi-

natorial domain (c-domain 1, see Section 3.2.3 above) due to inputs from motor com-

mands and re–afferent somato-motor signals result in reinforced connections. After

learning, these will allow the matching units to generate adequate muscles commands

in order to produce an expected sensory effect.

• Control of gaze and attention. When the gaze shifts toward a stimulus, co–activations in

the second combinatorial domain (c-domain 2) due to gaze movement and retinal in-

put reinforce connections between neurons coding these signals. This learning enables

the matching units to shift gaze to any focus of attention.

• Hand tracking. When the eyes look at the moving hand, co–activations in the third

combinatorial domain (c-domain 3), due to inputs signaling gaze movement and hand
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movement, result in reinforced connections that relate equivalent hand and gaze path-

ways. This set of matching units learns to perform visual tracking of hand movement.

• Reaching to foveated targets. When the hand moves toward the foveated target, co–

activation of previously reinforced hand–gaze and gaze–retinal connections leads to

learning in the connections of matching units. After training, these units will be able

to serve reaching to foveated targets, even if the hand is not in the field of view.

Note that within the parieto–frontal network, gaze and arm directional and position signals

play a unifying role. First, a subset of processing units is pre–selected based on gaze and

arm position and these units then learn stable relationships between visually derived signals

and somatomotor signals.

In summary, recent work on the coding of reaching movements in the brain has significantly

advanced the knowledge of sensorimotor transformation on several fronts. Experimental

evidence points to the fact that cortical control of reaching is distributed along a parieto–

frontal network and it involves serial and parallel recruitment of neural populations dis-

tributed along a visual–to–somatic gradient. Coding of both arm and eye movements in

an eye—centered reference frame, may represent the ’missing link’ in understanding this

visuomotor mapping.

Burnod and co–workers (1999) integrative framework was described in more detail, with

the belief that it currently represents the most coherent proposal of how computational pro-

cesses involved in reaching can be specified at the biological level. Up to the present, the

simulation of a complete neural network to perform the neural operations of matching units

has not been solved yet. In this thesis, we bring computational evidence from simulations

with realistic spiking neural models for the learning mechanisms involved in the progressive

match framework. In the remainder of this chapter, we focus upon discussing biologically

inspired neural network models of visuomotor coordination.

3.3 Biologically inspired models of visuomotor mapping

At present, after several decades of applied research, the adaptive capabilities of motion

control on biological organisms are still vastly superior to the capabilities of robotic systems.

Evident sources of inspiration for the creation of more intelligent robots are the real nervous

systems. In the recent years, numerous neural network models have been developed to
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apply biologically inspired control mechanisms to various robot control tasks (Bullock et

al., 1995; Zeller et al., 1995). Accordingly, several recent proposals have been made for a

more physiologically inspired modeling of visuomotor coordination development (Burnod

et al., 1992; Salinas and Abbott, 1995). Efforts on this direction have been aimed at the

construction of neural architectures that are completely founded upon anatomical evidence.

This means, to use neural elements that correspond as closely as possible to known neural

cell types and to apply biologically plausible learning (Bullock et al., 1995).

This research direction reflects a change in emphasis away from the more traditional ap-

proaches that model visuomotor development based on control theory formalisms (Mas-

sone, 1995; Jordan, 1996; Jordan and Wolpert, 2000). That is, it explores alternate learning

principles to the error-correction mechanisms (see Mohl, 1993). The attention is oriented

towards investigating the efficacy of the neocortex organizational principles, when they are

applied to arm-reaching tasks. These principles are of an unsupervised nature and are the

result of correlation–based associations (e.g., Hebbian learning).

At first, it was suggested that nonlinear sensorimotor transformations could be modeled as

sets of linearized representations, and so become a simple linear problem (Bullock et al.,

1993). Furthermore, Baraduc and Guigon (2002) demonstrated using rigorous mathematical

apparatus, that linear transformations can be learned by Hebbian associations, so long as the

training examples satisfy a regularity condition. For cases where the examples do not satisfy

the regularity condition (e.g., non–uniform distribution of preferred attributes of neurons in

a population) learning the transformation is possible only with a stochastic error–correcting

learning rule (see discussion in Section 3.3.2).

This section first reviews the main developmental paradigm for learning visuomotor coor-

dination. Then we briefly discuss the relation between self–organizing and error–correcting

mechanisms and finally, we focus upon our main interest that of physiologically inspired

models driven by means of unsupervised learning.

3.3.1 The developmental paradigm

A large number of models that learn inverse kinematics through experience use a circular

reaction learning protocol. The circular reaction concept was introduced by Piaget (1969) and

describes the following behavioral loop: as a child performs random, spontaneously gener-

ated movements of his arm, his eyes follow the arm’s motion, thereby enabling the learning
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of a transformation from a visual representation of arm position to a motor representation

of the same arm position. Inspired by this developmental process, researchers in robotics

have implemented a similar adaptive process for learning inverse kinematics. This process

is based on an autonomously controlled behavioral cycle with two components: production

and perception, and is referred to as motor babbling (Kuperstein, 1988; Ritter et al., 1992).

During a motor babbling stage, the control system endogenously generates random move-

ments, which displace the arm to different postures, bringing the end–effector into view.

For each configuration of the arm, the vision system locates the end–effector and correla-

tions between joint variables and eye variables are learned. After the correlations are stored

in connection weights, the visual input passes through the weight network to generate a

predicted arm activation vector. The difference between the predicted and externally gen-

erated activation vectors is used to modify the weights network and after many babbles the

model will learn to accurately reach to the foveated objects in the workspace (Kuperstein,

1988; Gaudiano and Grossberg, 1991).

In the last decade, it has been pointed out that an algorithm based exclusively on random

movement generation–and–observation for learning the inverse kinematics has a number

of drawbacks (Jordan, 1996; see Section 3.3.2 below). Despite this limitation, the action–

perception cycle remains the de facto behavioral framework for building developmental mod-

els of eye–hand coordination.

The circular reaction learning is not the only concept that computational researchers have

borrowed from developmental psychology in an attempt to create artificial systems capable

of adaptive, on–line control of goal directed reaching. Kuniyoshi and coworkers proposed

a developmental framework based on the concepts of assimilation and accommodation, im-

itation and entrainment dynamics (Kuniyoshi and Berthouze, 1998; Kuniyoshi et al., 1999;

see also Smith and Thelen, 1993). The implementation of these notions allows an artificial

system to bootstrap itself towards a higher complexity through embodied interaction dy-

namics with the environment. Acquisition of eye–hand coordination and cross–modality

mapping are attributed to the emergence of ordered structure from: interaction between

many sensory-motor processes, embodiment, and basic pre–existing behavior patterns (i.e.,

reflexes) (Berthouze and Kuniyoshi, 1998; Kuniyoshi and Berthouze, 1998).

The importance of a pre–existing repertoire of motor primitives such as primitive reflexes,

to support the development of coordinated movement has been also emphasized by Metta

and co–workers (1999). The authors proposed a developmentally plausible solution for the
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emergence of eye–hand coordination. Instead of computing the kinematics required by the

transformation of information in 3D visual coordinates to hand coordinates, they imple-

mented a direct mapping between the eye–head motor plant and the arm motor plant. In

this approach, the eye–head movement is controlled using force fields. Consequently, the

position of the target point in space can be coded using motor commands, namely the com-

mands that control the position of the head and that of the eye with respect to the head.

This allows the arm’s force–fields to be obtained through a motor–to–motor mapping, from

eye–head force fields. On the human infants, this mapping is assembled through experience

and it is possible thanks to the built–in motor reflexes and the sensory–triggered motions

that provide an effective means for linking vision and proprioception.

3.3.2 Self–organizing and error–based mechanisms for direction mapping

The direct inverse modeling approach outlined in the previous section has a number of

limitations and cannot properly control nonlinear redundant objects (Jordan, 1996). More

effective algorithms have been proposed, which solve the inverse kinematics problem in

two phases. During an initial learning by doing period, the forward kinematics from joint

angles to arm posture are learned. In a second stage, the inverse kinematics from desired

trajectory to joint–angle map are learned, by using error–correction mechanisms (Mel, 1991;

Jordan, 1996).

The error–correction algorithms represent the most common approach in modeling sensory

guided reaching. A more biologically plausible alternative is to use unsupervised learn-

ing based on Hebbian associations. It was pointed out that correlation–based association

mechanisms can assure the alignment of sensorimotor maps for the correct transfer of infor-

mation for reaching (Baraduc and Guigon, 2002). We illustrate here the application of these

learning rules to the direction–mapping problem.

Direction–mapping learning is an effective approach for translating spatial trajectory to

end–effector directions, which has received increased attention in recent years amongst re-

searchers working on modeling of sensorimotor coordination (Bullock et al., 1993; Fiala,

1995; see also Section 2.3.2). Perhaps the most illustrative example of learning direction

mapping for visually guided movements is the self–organizing DIRECT model proposed

by Bullock and colleagues (1993).

The central operation in the DIRECT system is the mapping of spatial directions in body–
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Figure 3.3: Processing stages of the self–organizing DIRECT model for control of movement
(adapted after Bullock et al., 1993). Learning of the spatial direction to joint rotation map-
ping occurs during an action–perception cycle triggered by the GO signal, and is based on
an improved Hebbian-like learning rule. See in text for details.

centered coordinates to joint directions in muscle–coordinates. This is accomplished in a

number of processing stages as illustrated in Figure 3.3. First, the current position of the end

effector is determined and the desired movement direction is computed as the difference

between the visual representation of the target position and the actual representation of

the end effector (first two stages in Figure 3.3). Second, the actual motor position signal is

combined with the spatial direction vector using a self–organizing network. Learning at

this stage results in the formation of a map where each cell is sensitive to a particular spatial

direction in a particular position of joint space (the position–direction map in Figure 3.3).

Learning of spatial–to–motor direction mapping takes place in the third stage of the model

(see the modifiable blue synapses in Figure 3.3). Here, translation of position–direction

information into joint-directions is learned during a motor babbling period, when the GO

signal generates random movements. The adaptation of the plastic synapses is based on a

variant of normalized Hebbian learning mechanism, known as the outstar rule (Grossberg,

1998). After learning, the model is capable of visual control of reaching with tools and

clamped joints, in the presence of visual input distortions or in the absence of visual signals
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(i.e., blind reaching).

Learning of the differential transformation between the motor and spatial directions can

also be implemented by using a gradient descent algorithm (Ritter et al., 1989). Fiala (1995)

proposed an error–correction based algorithm that combines the DIRECT and VITE models

(Bullock and Grossberg, 1989) in order to obtain bell–shaped velocity profiles of trajecto-

ries. In this architecture, the spatial directional vector is mapped to a motor direction vector

through an intervening field of cells, referred to as direction mapping cells. The difference in

activity between the spatial and motor direction vectors is computed and minimized with a

gradient descent algorithm. Feedback information from the motor output layer is also taken

into account during learning.

The model learns a kind of inverse Jacobian in a manner similar to that obtained by Ritter

et al. (1989) and succeeds in reproducing straight–line motions and unimodal, bell–shaped

velocity profiles. Based on the model’s good performance, Fiala (1995) has tried to motivate

the use of error–correction learning mechanisms with behavioral and biological evidence.

Thus, behavioral results on spiraling–in movements during reaching suggest that the visual

error between the hand and target is computed during movement (Roby-Brami and Burnod,

1995). However, these experimental findings also indicate that movement usually begins as

a straight line along the transformed direction and a spiraling movement is often observed

during the later part of the reaching. This observation suggests the existence of different

stages in movement control, which, accordingly, may rely on different mechanisms.

According to Doya (1999), Hebbian synaptic mechanisms characterize the self–organization

of the cerebral cortex, while error–correction learning is implemented in the cerebellum.

Given the separate localization of these adaptation mechanisms a plausible hypothesis is

that learning of movement control implies synaptic changes driven by different rules, in

both structures. At the cortical level, correlation–based associations may be involved in the

formation of stable connections for the alignment of visual and motor neural representa-

tions. This process allows the correct transfer of information to initiate the movement, by

specifying the directional information. The involvement of error–correction mechanisms

through the cerebellum may be necessary for the adjustment of the trajectory during the

later stages of movement, to obtain an adequate reaching of the target (see also Fiala, 1995;

Doya, 1999).

To conclude, there is currently a biologically motivated research direction in modeling of

arm movement control. Much attention within this direction is given to the use of self–
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organizing algorithms for learning of inverse kinematics. It has been argued that Hebbian

association mechanisms can learn linear transformations and they can implement synaptic

adaptation for development of visuomotor mapping. Furthermore, despite the limitations

of direct inverse modeling, there is a growing research stream which builds–upon the devel-

opmental approach of visuomotor acquisition. In this thesis, modeling work of visuomotor

mapping is based exclusively on unsupervised learning and it is placed within the develop-

mental paradigm.

3.3.3 Models inspired by physiological data

A significant part of this chapter has been devoted to the review of recent experimental

data on neurobiology of visuomotor transformation (Section 3.2). In comparison, the survey

of biologically inspired modeling of sensorimotor development is less extensive. This is

because, while much detail regarding the manner in which the brain solves the visuomotor

transformation has been accumulated, the implementation of these concepts within artificial

systems has only just begun. We believe that most importantly, the current progress towards

the understanding of arm reaching neurobiology has given rise to a conceptual framework

that explicates the neural basis of computation, allowing its readily implementation (see

Section 3.2.3 for instance).

The advantages of constructing artificial systems inspired by real living systems are clear

(Bullock et al., 1995; Cliff, 1995). Note that we are referring to an implementation fully

grounded on physiological data, with architecture, neural models and learning rules all

designed to be biologically plausible. We believe that an important step forward in this

endeavor has been represented by the proposal of Burnod and colleagues (1999) (see Sec-

tion 3.2.3). Even if the implementation of this model is not yet complete, it represents the

result of a series of precursor models, which explore the alignment of hand, gaze and visual

signal representations by unsupervised means. We review this previous work here.

Salinas and Abbott models

The biological modeling of the visuomotor transformation has been significantly advanced

by the studies of Salinas and Abbott (1995, 1996). Their work addresses two major prob-

lems. The first problem considers how to find the mechanisms that ensure the alignment
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of neural representations, in such a way that sensory activity representing target location

evokes an appropriate motor response toward the target (the alignment problem). The sec-

ond issue addresses the coordinate transformation problem. That is, if the target location in

body–coordinates is determined by a combination of retinal position and gaze direction,

then what set of weight connections assure that the correct combination is transferred to the

motor network?

Their solution to the alignment problem consists of an unsupervised mechanism that trans-

fers information between two networks composed of broadly selective neurons. Sensory

neurons can encode retinal position solely, or retinal and gaze direction information, while

motor neurons are assigned with preferred directions of movement. Both motor and sensory

neurons firing rates are characterized by maximal cosine tuning curves (see Section 2.1.3 on

direction coding).

The networks are coupled through modifiable synapses and learning occurs during the ob-

servation of the random movements generated by the motor network (e.g., motor babbling

phase). The training procedure is based on a general Hebbian learning mechanism that

modifies the synaptic weight wij between a j sensory neuron and an imotor neuron accord-

ing with the correlation between their firing rates Rmi and Rsj :

wij =< RsjR
m
i > −k (3.1)

where k is an arbitrary constant set to optimize the performance of the system. This process

leads to an accurate alignment of the visual and motor representations, which ensures that

sensory activity coding the target position is correctly used to guide the movement gener-

ated in the motor map. The authors derive a condition for the network alignment to occur.

The condition is that the strength of the connection between a sensory neuron j and a mo-

tor neuron i depends on the magnitude of the difference between the neurons preferred

locations.

Furthermore, the authors address the problem of linear (and nonlinear) mapping of the tar-

get location in retinal coordinates into movement direction in head–centered coordinates.

It is shown that a sensory–motor network with synaptic weights that depends on the dif-

ference between the preferred direction of the motor neuron and the sum of the preferred

retinal position and gaze direction for the sensory neuron in a pair can provide a general

mechanism for linear coordinate transformation. The nonlinear coordinate transformation

problem was further implemented with computational mechanisms at the population level,
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which are shown to realize neural multiplication (Salinas and Abbott, 1996).

A more general computational framework, which deals in detail with the distributed rep-

resentation of linear transformations and discusses the limitations of Hebbian mechanisms

when compared to supervised means, in learning of nonlinear coordinate transformations

can be found in Baraduc and Guigon (2002).

Burnod and colleagues work

A significant contribution to the understanding of computational mechanisms involved in

the control of arm–reaching was brought by the work of Burnod and co–workers during the

last decade. In comparison with Salinas and Abbott mathematical model, those of Burnod

and colleagues are more tightly linked to the physiological and anatomical aspects of senso-

rimotor learning. Models developed by this research group incorporate somatic information

beside the visually derived signals, in order to compute the appropriate motor command for

reaching out to a visual target (Burnod et al., 1992; Baraduc et al., 1999).

A precursor to matching units’ concept and neurons combinatorial properties was first de-

scribed by Burnod et al. (1992). The primary goal of this study was to examine how the

central nervous system might learn to reach towards a target position from any initial arm

posture. The proposed architecture has three layers: (1) a map of matching units, which com-

bine visual directional input and somatic arm signals and project to the next layer of synergy

units; (2) a laterally connected map of synergy neurons which integrate the input from the

matching layer and periphery feedback and which projects to a third (3) layer of motor output

units that displace the hand in space. The appropriate combination of the visual informa-

tion about movement trajectory with the kinesthetic information concerning the orientation

of the arm in space is learned by the network from spontaneous movements.

Learning of the inverse kinematics from hand space to actuator space takes place in the

matching units layer, according to correlation–based adaptation rules applied to sensory

and motor co–activated events. The neural response in each layer is given by a combina-

tion of the inputs coming from the afferent source and the lateral signals from other units in

the layer. The computation learned by the units can be approximated by a bilinear opera-

tion. This is interpreted by the authors as a projection of the visual information on a motor

reference frame, that simultaneously rotates with the arm (Burnod et al., 1992). Once the

network is trained, the signal on the direction of intended hand movement is projected onto
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the matching units and activates the appropriate synergy units as a function of the starting

arm posture.

A simpler, but more readily implementable variant of the above model was proposed re-

cently by Baraduc et al. (1999). They consider a neural network model which combines

broadly tuned (muscular) proprioceptive and visually derived directional input to calculate

the angular motor commands for the initial part of the movement of a two–link arm. The

arm position is represented by a set of 20 proprioceptive neurons coding muscle length. Di-

rection of the desired movement is coded by a population of 50 visual neurons with cosine

tuning functions. Motor commands are specified by a population of 50 motor neurons with

optimal tuning property, which command motor synergies (direction in joint space). Com-

pared to Burnod et al. (1992) model, this architecture is simplified by considering only two

layers and learning only at one level. The advantage is that, in this case, the motor synergy

layer encodes information directly in joint coordinates.

Information concerning the position of the arm and the visual desired direction is com-

bined in two steps. First, an intermediate representation of arm position is formed in a

somatic layer, by the combination of feed–forward proprioceptive signals and lateral intra-

layer feedback. Second, activity in the somatic layer is combined with the visual directional

activity. Only weights between the proprioceptive input layer and the somatic map are sub-

ject of learning. Training is performed by motor babbling in 5 positions and takes place

according to a variant of the delta rule (i.e., supervised learning). After learning, the net-

work generates arm commands (in joint coordinates) which move in the same direction as

the visual input, over a large part of the visual inputs (16 directions of movements were

tested).

Compared to previous models this approach has several advantages. In contrast to the DI-

RECT model (Bullock et al., 1993), Baraduc and co–workers use broadly tuned motor neu-

rons for learning of visuomotor mapping of direction. Compared with Salinas and Abbott

approach, generation of movement is modeled with respect to the arm position (propriocep-

tive feedback). However, the somatic map organization produces a motor population vec-

tor, which largely deviates from the desired direction of movement. We believe this result

might be improved by separating the motor map organization from learning the direction

mapping task. A further discussion of these models can be found in the final chapter, along

with an evaluation of the results of our work.
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