
Chapter 1

Introduction

Major advances in science often consist in discovering how macro–scale phenomena reduce

to their miscroscale constituents. The ’astonishing hypothesis’ is that our minds can be

explained by understanding the detailed behavior of neurons in the brain and their interac-

tions with each other (Crick, 1994). Brains are collections of billions of interconnected cells,

each of them being an individual machinery which receives, process and transmits infor-

mation (Kandel et al., 2000). The human brain generates complex patterns of behavior at

different scales of organization based on the large amount of neural components that inter-

act simultaneously in a rich number of parallel ways. In order to understand the inherent

complexity of such a system many complementary research strategies are employed. To-

day, in this attempt, experimental and theoretical neuroscience studies are accompanied by

mathematical theories of complex systems organization, evolutionary and developmental

studies of the brain organization, all assisted by computational modeling means.

The work presented in this thesis lies at the intersection of three domains: neuroscience,

artificial intelligence and developmental psychology. This work makes use of computer

simulations with networks of neuron–like elements in order to understand how cognitive

phenomena can be grounded at the neural level. In this introduction, we motivate our ap-

proach and we present the problem statement. In Section 1, a short overview of several

research strategies of brain function is provided. We believe that our methods are best de-

scribed as computational neuroscience. An introduction to this field is given, accompanied

by a discussion of the advantages of computer modeling, as a methodology. The computa-

tional approach is based on information processing with spiking neurons, which are moti-
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vated in Section 1.1.2. In Section 2 we propose a number of challenging problems in motor

control, which are investigated in this thesis through biologically inspired modeling. The

specific objectives of our work are introduced in Section 3. Finally, Section 4 outlines the

structure of the thesis.

1.1 What is Computational Neuroscience?

Computational neuroscience is an evolving approach that draws on neurobiological data,

but uses computational modeling and computer simulations to investigate the principles of

operation governing neurons and networks of neurons (see Bower and Beeman, 1998; De

Schutter, 2001). The domain is rapidly growing, involving researchers with backgrounds

ranging from psychology and cellular biology to artificial intelligence. What is new about

this discipline and how does it relate to other research techniques of the nervous system?

Firstly, brain function can be investigated with dedicated tools from experimental neuro-

science. Using imaging techniques (PET, fMRI), intra- and extra-cellular recording, patch

clamp and neuron staining techniques promises to allow researchers to visualize the ’brain

in action’ (Toga and Mazziotta, 1996; Frackowiak et al., 1997; Kandel et al., 2000). Today,

this experimental technology has advanced to the point that biological information can be

readily obtained, hence, this knowledge has accumulated and generated huge databases

of neurophysiological information (Bower and Beeman, 1998). Supported by advances in

computer software and hardware technology, experimental biologists oriented towards the

test of mathematical models and the simulation of neurobiological details (see Koch and

Segev, 1998). This research direction has impelled the emergence of the computational neu-

roscience field, where it advocates the use of structurally realistic neural models in the sim-

ulation of the brain phenomena (Bower and Beeman, 1998).

The main goal of neuroscience, since its early beginnings, has been to bridge the gap be-

tween the behavior of single neurons and complex behavior emerging from their coopera-

tive function. The theory of complex systems is specifically aimed at understanding this is-

sue. The dynamics of complex systems are characterized by local, spontaneous ordering ten-

dencies, which can lead to global self–organized states. The brain is such a self-organizing

system and the modeling of how it can learn by itself represents a successful paradigm in

the brain research (Kelso, 1988; Kohonen, 1995).
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Dynamical systems theory is also increasingly exploited as a means of understanding brain

function, both at a neural and cognitive level. At the neural level, a number of researchers

have argued that the dynamical properties of firing neurons may have a central role to play

in explaining how the brain computes (i.e., synchronous oscillations may play a crucial role

in cognitive binding, Singer, 1994). At the cognitive level, a recent view is that cognitive pro-

cesses are behavioral patterns of non-linear dynamical systems and are best studied using

the mathematics of dynamical modeling and dynamical systems theory (Kelso, 1988; Port

and Van Gelder, 1995). This paradigm has recently challenged the computational perspec-

tive of the brain function (Van Gelder, 1995). Despite the current debate of whether the brain

computes or integrates (Chauvet, 2002), the dynamical systems theory remains a valuable,

generally accepted mathematical approach for analyzing patterns of behavior generated at

different scales of organization.

To understand brain function it is important to consider that it is the end product of an evo-

lutionary and developmental process. With regard to brain evolution from a simple to a

more complex system, a viable approach is to consider that it has developed incrementally

over evolutionary time (Crick, 1994). An incremental approach will tend to favor the addi-

tion of small specialists modules rather than a re–engineering of the entire system (Crick,

1994). For instance, taking this view, what evolution has done in constructing our sensory

systems was to provide additional sources of constraint on the possible identity of an object

(Reilly, 2001) or to facilitate the apparition of a new response to the environment (Goodale,

2000).

Compared to the evolutionary perspective, the developmental study of the brain is more

within our grasp. It represents a primary methodology for the analysis and the understand-

ing of the evolution of human cognition and behavior during a lifetime (see the develop-

mental psychology and the epigenetic approach, Piaget, 1969). It also represents a fruitful

paradigm in which artificial systems can be constructed to develop by their own means,

complex behaviors based on simpler components (Zlatev and Balkenius, 2001; Weng et al.,

2001). A developmental approach provides a structured decomposition of complex tasks.

It divides high–level processes into computationally simple, and developmentally earlier,

behaviors (Scassellati, 1998). From this perspective, language and cognition may be under-

stood through the incremental development of more sophisticated structures on the foun-

dations of preexisting low–level, sensory–motor programs (Reilly, in press).

To conclude, in order to understand the complexity of brain processes, several research dis-
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ciplines are employed in a complementary manner. The new field of computational neuro-

science is rooted in neuroscience, by drawing on biological data about information process-

ing in the cells of the brain. In this attempt, the mathematical means of dynamical systems

theory is valuable and can be employed for the analysis of behavioral patterns emerged.

Regarding the developmental approach, in this thesis it is believed that only by proceed-

ing in an incremental manner can we overcome the complexity issues facing any attempt

to model the brain. The core methodology of computational neuroscience is represented by

means of computer modeling. The advantages of cognitive modeling in general and those

of simulation with functionally realistic neurons, in particular, are outlined below.

1.1.1 Why cognitive modeling?

Experimental investigations in neuroscience can provide a detailed characterization of the

chemical processes that underlie cognitive processes, but what matters for most scholars in

cognitive science are not the details themselves, but the principles that are embodied in these

details (McClelland, 2000). What is essential about the computational models is that they

enable researchers to explore the nature of these principles, by implementing on a computer

the underlying mechanisms (Levine, 2000; Rolls and Treves, 1998; O’Reilly and Munakata,

2000).

Furthermore, it is important to view the computational modeling of the brain processes from

the reconstructionist paradigm. This concentrates on the process of constructing human cog-

nition from the action of a large number of interacting components (McClelland, 2000). The

emphasis is on investigating the emergent phenomena which arise from these interactions,

and which is not obviously present in the behavior of individual elements (Cleeremans and

French, 1996; O’Reilly and Munakata, 2000).

Computational modeling allows manipulation and control of variables more precisely than

can be done with a real system. This enables the researcher to explore the causal roles of

different components (see the modeling of dendrites role in auditory coincidence detection

in Agmon-Snir et al., 1998). Computer modeling allows testing of hypothesis, but it is also

a powerful means of generating new and original hypothesis. A computational model can

provide novel sources of insight into behavior by providing alternative explanations of a

phenomena (see the new hypothesis on pattern recognition in a Purkinje cell in Steuber

and De Schutter (in press)). Finally, when creating a computational model, one has to be
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explicit about assumptions and about exactly how the processes work (O’Reilly and Mu-

nakata, 2000).

Computational neuroscience differs from previous approaches to neural modeling (see the

connectionist paradigm, Rumelhart and McClelland, 1986) in that, researchers in the area

believe that understanding the way the brain computes is very closely dependent on the

anatomical and physiological details of the neural components. Hence, it focuses upon the

simulation of the cortical functions by using neural models that are in agreement with the

structure and physiology of real neurons.

1.1.2 Why spiking neurons?

Cognitive models developed in the previous decade, dominated by the connectionist psy-

chology paradigm (Rumelhart and McClelland, 1986) have neglected the spiking nature of

the neurons. These models have been usually constructed based on a neural model with

sigmoid activation function that gives a continuous, real-valued output. Networks of such

neurons have proven very powerful computationally (O’Reilly, 2001). Moreover, they have

been supported biologically by the long-standing belief in neuroscience that information in

the brain is carried mainly in the neurons discharge rates (for a review see Recce, 1999).

Recent observations of how fast computations take place in the visual brain has questioned

whether the firing rate interpretation alone can account for rapid neural information pro-

cessing (Thorpe and Gautrais, 1997). Experimental evidence has been accumulated in the

last years to indicate that biological neural systems use the timing of single action potentials

to encode information (Abeles et al., 1993; Gerstner et al., 1996; Rieke et al., 1997). Conse-

quently, learning that information can be encoded in the temporal pattern of neuron firing,

the research on information processing in neural systems has focussed on investigating com-

putations with spiking neurons (Gerstner and Van Hemmen, 1994; Maass, 1995; Rieke et al.,

1997; Stevens and Zador, 1998).

This research stream has given rise to a new generation of neural networks, referred to as

pulsed neural networks and has focused on providing a mathematical description of the com-

putational properties of biological neurons (Gerstner, 1999; Maass, 1999). Several alternative

theories to the rate–coding hypothesis have been proposed, which suggest different schemes

for where the neural information may be contained, such as in the timing of the spikes, and

in the correlated activity of neurons (Stevens and Zador, 1995; Recce, 1999).
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The computational work of this thesis is based on a simplified spiking neural model that

focuses upon several aspects of the biological neuron function. Compared to the classical

rate–coding neuron, this model accounts for the spiking nature of real cells and allows differ-

ent modes of computation and learning. On the other hand, in comparison with structurally

realistic neural models, it accounts only for a limited number of computational aspects, with

the advantage of being simple to analyze and to simulate in a large–scale network of neu-

rons.

The development of the new generation of spiking neural networks has necessitated the de-

sign of dedicated simulation environments. Several simulation frameworks for the realistic

modeling of biological neurons (Hines and Carnevale, 1995; Bower and Beeman, 1998) or

for computation with simplified models (Delorme et al., 1999; Sougné, 1999) have been cre-

ated in the last decade. In our case, the choice of a modeling environment was motivated

primarily by the ability of the system to support the development of a family of models

required by current and future work goals. What seemed to be the best solution was to

use a general-purpose simulator, regardless of the neural model implemented, which was

extended to allow computations and learning with spiking neurons. The simulator chosen

is a classic neural networks simulator, SNNS: Stuttgart Neural Network Simulator (Zell et

al., 1992), whose extension for modeling of spiking neurons is referred to, in this thesis, as

SpikeNNS.

To conclude, this thesis advocates the use of the computer simulation methodology in order

to investigate computational principles of the cortex. Our work is aimed at providing an

illustration of how cognitive brain functions can be grounded at the neural level. In doing

this, we employ simulations with biologically inspired neural models. The general aim is to

explore within a developmental approach how emergent properties of the brain are high–

level effects that depend on low–level computational properties of the basic constituents.

This goal is investigated with a number of models of specific cognitive phenomena.

1.2 Identifying difficult cognitive problems

1.2.1 Neonatal imitation

Imitation is an essential behavior for cognitive development in infants, because it serves

communication and rapid acquisition of adaptive behavior and is an alternative to expen-
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sive trial–and–error learning (Butterworth, 1999). Meltzoff and Moore (1977) have shown

that infants as young as 12–days–old can imitate facial actions of caregivers, such as tongue

protrusion, mouth opening and manual gestures. Their findings served as an essential testi-

mony to the existence of imitation in newborns and suggested the possibility that immediate

imitation is a fundamental mechanism of communication in humans (Nadel and Butter-

worth, 1999). Since the publication of their original results, a large number of studies have

been issued to investigate the scale of the neonate imitation phenomena. A range of facial

expressions and hand gestures, as well as deferred imitation capacity, have been described

with respect to the age of onset and generalization capacity (Kugiumutzakis, 1999; Meltzoff

and Moore, 1999).

The ’holy grail’ for the theories of neonatal imitation has been to elucidate the mechanisms

whereby infants are able to connect the felt but unseen movements of the self with the seen

but unfelt movements of the others (Butterworth, 1999). This process is considered to re-

quire an inter–modal mapping, that is, a transfer of information between different percep-

tive modalities (i.e., visual and somatosensory) in order to control the imitative acts. A com-

mon belief is that proprioceptive feedback on self-produced movements can be compared to

the visually specified target in a supra-modal (Metlzoff and Moore, 1999) or amodal frame-

work (Trevarthen et al., 1999).

To us, neonatal imitation behavior represents the challenging problem. At a deeper analysis,

it appeared to be the ’tip of the iceberg’ of a more general problem of brain computation:

sensory fusion or cross–modal matching of information. That is, the basic computational

demand for imitation is met by the transfer of information between different modalities. In

this way, it led us to the fundamental topics of perception–action coupling and sensorimotor

coordination.

1.2.2 Visuomotor coordination

Most human and animal movements are under continual sensory guidance. Even a simple

task such as reaching and grasping an object, requires the analysis of visual information to

trigger a reaching movement and the integration of proprioceptive information and tactile

sensation to tune the grip to the weight, friction, and shape of the object (Kandel et al., 2000).

That is, purposeful action is possible through the integration of sensory signals coming from

various sources (vision, hearing, touch) and their translation into a set of motor commands

7



Chapter 1: Introduction

to the muscles (Massone, 1995; Kandel et al., 2000).

Consequently, significant efforts have been dedicated in the last decades to the understand-

ing of the computational mechanisms that support sensorimotor coordination in neural sys-

tems. Particular attention has been given to the development of coordination between the

eye and the hand for reaching movements (see Caminiti et al., 1992). One reason is repre-

sented by the huge applicability, that a mechanism which allows the correct transformation

of visual signals into motor output, would have in the implementation of artificial systems

capable of online, adaptive motor control (Zeller et al., 1995; Weng et al., 2001). Another

motivation is that by understanding the brain computations that underlie reaching move-

ments, it will be possible for humans to control a robotic arm solely through the power of

thought (Nicolelis and Chapin, 2002).

Despite the efforts of classical artificial intelligence solely, it seems that the behavioral capa-

bilities of biological organisms can be simulated only by closely reproducing neural com-

putational mechanisms. Consequently, several recent proposals have been made for a more

biologically inspired modeling of visuomotor coordination (Burnod et al., 1992; Bullock et

al., 1995; Zeller et al., 1995). These attempts are facilitated by the development of a new

conceptual scheme of cortical control of reaching movements.

Research on the visual guidance of arm–reaching movement has made significant progress

in the recent years, in explaining control theory formalisms such as the ’coordinate transfor-

mation’ (i.e., sensorimotor transformation), in terms of computational properties of single

neurons and networks of neurons (Andersen et al., 1997; Kalaska et al., 1997; Caminiti et al.,

1998; Burnod et al., 1999). Details regarding the manner in which the brain solves the sen-

sorimotor mapping have cumulated and have given rise to an integrative framework that

links neurophysiological and computational aspects and allows the ready implementation

of the latter in terms of the former (Bullock et al., 1995; Burnod et al., 1999).

What is still needed, are models whose architecture is supported by anatomical evidence,

composed of elements that correspond as closely as possible to known neural cell types, and

whose functionality meet psychophysical criteria (Bullock et al., 1995). It is this challenge

that motivates part of the work presented within this thesis. The advantage of modeling the

neurophysiological processes involved in the cortical control of reaching is bi-directional.

Firstly, more adaptive and flexible models can be obtained. Secondly, models can be used to

test computational principles and eventually to reveal unknown mechanisms of visuomotor

control of movement.
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1.2.3 Cortical control of motion direction

The human motor system is organized in a functional hierarchy, with each level concerned

with different decisions (Kandel et al., 2000). Voluntary movements are organized at the

highest level of the frontal cortical lobes, in the premotor and primary motor cortex. These

areas are involved in the preparation, execution and adaptation of movement. Movements

of the arm, such as reaching or grasping, involve multiple joints and require precise acti-

vation of the skeletal muscles. This raises the question of whether cells at the cortical level

control muscle activation or do they encode more global features of the movement, such as

direction, amplitude, or speed (Kakei et al., 1999). Today, there is substantial evidence that

the direction of movement is represented at the cortical level, in the activity of large pop-

ulations of cells that are broadly selective to the direction of motion (Georgopoulos et al.,

1984).

Feature detection is not only a characteristic of motor cells, but represents an essential prop-

erty of neurons in the brain. It means that neurons respond to a particular feature of the

stimulus (i.e., orientation, direction, frequency of signal) and specialize in detecting a range

of values of that feature in the input space (Hubel and Wiesel, 1962). The dedication of neu-

rons is very widely distributed in the brain. For instance, directional selectivity has been

described for neurons in the visual, motor, and touch cortex (Kandel et al., 2000). The spe-

cialization of the neurons generally occurs by the way each cell is connected with other cells,

from the input layers or within the same layer, and it results in the emergence of cortical fea-

ture maps (see orientation visual maps in Blasdel, 1992). The development of these maps

can be modeled through a process of self-organization and topographical mapping of the

input space into the network nodes (Kohonen, 1984).

Despite the substantial evidence indicating that directional tuning is an essential feature of

the motor cortical neurons, it is not clear yet how the cortical control of motion direction

is developed. This contrasts with the detailed anatomical and computational knowledge

existent on the development of sensory, and in particular, visual maps (Obermayer et al.,

1990; Douglas et al., 1991; Blasdel, 1992; Sirosh, 1995). Nevertheless, it is believed that the

development of visual preferences may be based on a few design principles that in turn

rely on very general mechanisms utilizing the input structure of the system (Niebur and

Wörgötter, 1992).

Part of the work presented in this thesis concerns the simulation of the process whereby
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neurons in the motor areas develop directional selectivity. Firstly, modeling this process can

offer insights into whether directional tuning of motor cells is innate or acquired. Secondly,

the investigation of the functional principles of motor cortex can show in what degree the

organizational mechanisms of the sensory cortices also operate in the motor areas. Thirdly,

understanding the way the motor cortex organizes itself to control the direction of motion is

highly important for explaining the development of sensorimotor coordination as a whole.

Furthermore, current models of motor control which implement the control of end–effector

direction, lack a developmental model of how neurons at the cortical level acquire direc-

tional selectivity (Bullock et al., 1993). Hence, we believe that the modeling of the forma-

tion of directional motor map may have important implications for neurophysiology and

robotics.

1.3 The problem statement

Most generally, the research presented in this thesis is aimed at investigating how cognitive

functions in the brain can emerge from the properties of basic components, when these inter-

act and function cooperatively. This objective is narrowed down to the study of two topics:

cortical control of movement direction and visuomotor mapping of directional information.

Our detailed research objectives are:

• Modeling of the self–organization of motor cortical neurons for coding the direction

of movement.

• Modeling of the alignment of visual and motor neural representations for the guidance

of directional movements.

Note that these objectives are related. That is, by achieving the self–organization of the

motor directional map, the organized network can be used in the next stage for the devel-

opment of visuomotor mapping.

The original contribution of our models is represented primarily, by the investigation of the

two topics described above within the biologically inspired computational framework, of

spiking neural networks. Secondly, the motor directional map model represents a first at-

tempt to simulate the emergence of cortical directional selectivity within the self–organization

paradigm (Kohonen, 1984). The resulting representation of movement will be compared to
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the neurophysiological data that describes the coding of direction of movement in the motor

cortex (Georgopoulos et al., 1984; Georgopoulos et al., 1993). If the model succeeds in de-

veloping neural directional selectivity with a similar profile to that of real motor cells, than

we have a computational hypothesis for how the population coding emerges in the motor

cortex. Learning the visuomotor mapping of directional information in the conditions of

a population coding in the motor area represents another innovative feature of our mod-

eling work. This has computational and neurophysiological relevance for the learning of

visuomotor mapping.

In order to achieve these main objectives, they are preceded by the design of a modeling

environment for networks of spiking neurons. When modeling large–scale pulsed neural

networks with plastic synapses, the time efficiency of the simulation becomes an essential

issues in the design of the simulator (Jahnke et al., 1999). A number of strategies are imple-

mented and compared and an innovative event–driven mechanism is proposed to reduce

the time of simulation.

1.4 Thesis outline

The structure of this thesis is organized as follows.

Chapter 2 provides a biological framework of cortical control of motion direction, for use

in our modeling work. It introduces the self-organization paradigm for biological modeling

of cortical feature map formation. Finally, it reviews several recent neural network models

that address issues of cortical coding of motion direction.

Chapter 3 introduces a number of new theories on the biological and computational mecha-

nisms of perception–action coupling. Next, it focuses upon the description of an integrative

framework of how the visual guidance of arm reaching is implemented in the brain. A

review of several biologically inspired models of learning of visuomotor coordination is

presented.

Chapter 4 focuses upon the description of the implemented spiking neural model. It presents

how information can be communicated in the timing of single spikes, what types of compu-

tations are implemented and at what level of detail. Learning with spiking neurons is also

discussed.
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Chapter 5 presents the implementation of the SpikeNNS simulator. Design issues are dis-

cussed, with particular attention given to the strategies used to increase the time–efficiency

of the simulation. The configurable features of the simulator are outlined.

Chapter 6 describes in turn, the model of the motor cortex self-organization and that of

visuomotor mapping learning. The results of the simulations are analyzed and discussed in

comparison with current neurophysiological data and with previous modeling work.

Chapter 7 is devoted to a final discussion of the neurophysiological and theoretical implica-

tions of our models. It also proposes the potential integration of the models within artificial

motor control systems and it proposes possible avenues of future work. The relevance of

our visuomotor mapping model to the imitation problem is discussed in the end.
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