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Abstract

Sensorimotor coordination has been an active research topic for both neuroscience and arti-

ficial intelligence over the last decade. For the visual guidance of movement to be efficiently

implemented in artificial systems, it is essential to understand the computational mecha-

nisms underpinning biological motor control. This thesis contributes to the understanding

of this issue through the development of a biologically inspired computational framework

based on spiking neural networks. The work described in this thesis focuses upon the mod-

eling of two developmental processes.

Firstly, we address the development in a self–organizing map of neural directional selectiv-

ity. As a result of the learning process and of the input patterns used, the network learns

to represent �� directions of movement in a distributed code. A population coding of direc-

tion results, which is analyzed using the population vector scheme, and is compared with

neurobiological data on motor cortex organization.

Secondly, we propose a computational mechanism based on spike-timing dependent learn-

ing, for the transfer of directional information between a visual and a motor map. Learning

of the visuomotor mapping resides in the development of connection strengths that are de-

pendent on the similarity between the preferred directions of neurons in the two maps. The

computational mechanism obtained and the neural behaviors resulted are discussed with

respect to their neurophysiological implications. We believe that biologically inspired mod-

eling of motor control development can be highly beneficial to the understanding of brain

computations underlying movement control.
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Chapter 1

Introduction

Major advances in science often consist in discovering how macro–scale phenomena reduce

to their miscroscale constituents. The ’astonishing hypothesis’ is that our minds can be

explained by understanding the detailed behavior of neurons in the brain and their interac-

tions with each other (Crick, 1994). Brains are collections of billions of interconnected cells,

each of them being an individual machinery which receives, process and transmits infor-

mation (Kandel et al., 2000). The human brain generates complex patterns of behavior at

different scales of organization based on the large amount of neural components that inter-

act simultaneously in a rich number of parallel ways. In order to understand the inherent

complexity of such a system many complementary research strategies are employed. To-

day, in this attempt, experimental and theoretical neuroscience studies are accompanied by

mathematical theories of complex systems organization, evolutionary and developmental

studies of the brain organization, all assisted by computational modeling means.

The work presented in this thesis lies at the intersection of three domains: neuroscience,

artificial intelligence and developmental psychology. This work makes use of computer

simulations with networks of neuron–like elements in order to understand how cognitive

phenomena can be grounded at the neural level. In this introduction, we motivate our ap-

proach and we present the problem statement. In Section 1, a short overview of several

research strategies of brain function is provided. We believe that our methods are best de-

scribed as computational neuroscience. An introduction to this field is given, accompanied

by a discussion of the advantages of computer modeling, as a methodology. The computa-

tional approach is based on information processing with spiking neurons, which are moti-
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Chapter 1: Introduction

vated in Section 1.1.2. In Section 2 we propose a number of challenging problems in motor

control, which are investigated in this thesis through biologically inspired modeling. The

specific objectives of our work are introduced in Section 3. Finally, Section 4 outlines the

structure of the thesis.

1.1 What is Computational Neuroscience?

Computational neuroscience is an evolving approach that draws on neurobiological data,

but uses computational modeling and computer simulations to investigate the principles of

operation governing neurons and networks of neurons (see Bower and Beeman, 1998; De

Schutter, 2001). The domain is rapidly growing, involving researchers with backgrounds

ranging from psychology and cellular biology to artificial intelligence. What is new about

this discipline and how does it relate to other research techniques of the nervous system?

Firstly, brain function can be investigated with dedicated tools from experimental neuro-

science. Using imaging techniques (PET, fMRI), intra- and extra-cellular recording, patch

clamp and neuron staining techniques promises to allow researchers to visualize the ’brain

in action’ (Toga and Mazziotta, 1996; Frackowiak et al., 1997; Kandel et al., 2000). Today,

this experimental technology has advanced to the point that biological information can be

readily obtained, hence, this knowledge has accumulated and generated huge databases

of neurophysiological information (Bower and Beeman, 1998). Supported by advances in

computer software and hardware technology, experimental biologists oriented towards the

test of mathematical models and the simulation of neurobiological details (see Koch and

Segev, 1998). This research direction has impelled the emergence of the computational neu-

roscience field, where it advocates the use of structurally realistic neural models in the sim-

ulation of the brain phenomena (Bower and Beeman, 1998).

The main goal of neuroscience, since its early beginnings, has been to bridge the gap be-

tween the behavior of single neurons and complex behavior emerging from their coopera-

tive function. The theory of complex systems is specifically aimed at understanding this is-

sue. The dynamics of complex systems are characterized by local, spontaneous ordering ten-

dencies, which can lead to global self–organized states. The brain is such a self-organizing

system and the modeling of how it can learn by itself represents a successful paradigm in

the brain research (Kelso, 1988; Kohonen, 1995).

2
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Dynamical systems theory is also increasingly exploited as a means of understanding brain

function, both at a neural and cognitive level. At the neural level, a number of researchers

have argued that the dynamical properties of firing neurons may have a central role to play

in explaining how the brain computes (i.e., synchronous oscillations may play a crucial role

in cognitive binding, Singer, 1994). At the cognitive level, a recent view is that cognitive pro-

cesses are behavioral patterns of non-linear dynamical systems and are best studied using

the mathematics of dynamical modeling and dynamical systems theory (Kelso, 1988; Port

and Van Gelder, 1995). This paradigm has recently challenged the computational perspec-

tive of the brain function (Van Gelder, 1995). Despite the current debate of whether the brain

computes or integrates (Chauvet, 2002), the dynamical systems theory remains a valuable,

generally accepted mathematical approach for analyzing patterns of behavior generated at

different scales of organization.

To understand brain function it is important to consider that it is the end product of an evo-

lutionary and developmental process. With regard to brain evolution from a simple to a

more complex system, a viable approach is to consider that it has developed incrementally

over evolutionary time (Crick, 1994). An incremental approach will tend to favor the addi-

tion of small specialists modules rather than a re–engineering of the entire system (Crick,

1994). For instance, taking this view, what evolution has done in constructing our sensory

systems was to provide additional sources of constraint on the possible identity of an object

(Reilly, 2001) or to facilitate the apparition of a new response to the environment (Goodale,

2000).

Compared to the evolutionary perspective, the developmental study of the brain is more

within our grasp. It represents a primary methodology for the analysis and the understand-

ing of the evolution of human cognition and behavior during a lifetime (see the develop-

mental psychology and the epigenetic approach, Piaget, 1969). It also represents a fruitful

paradigm in which artificial systems can be constructed to develop by their own means,

complex behaviors based on simpler components (Zlatev and Balkenius, 2001; Weng et al.,

2001). A developmental approach provides a structured decomposition of complex tasks.

It divides high–level processes into computationally simple, and developmentally earlier,

behaviors (Scassellati, 1998). From this perspective, language and cognition may be under-

stood through the incremental development of more sophisticated structures on the foun-

dations of preexisting low–level, sensory–motor programs (Reilly, in press).

To conclude, in order to understand the complexity of brain processes, several research dis-

3
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ciplines are employed in a complementary manner. The new field of computational neuro-

science is rooted in neuroscience, by drawing on biological data about information process-

ing in the cells of the brain. In this attempt, the mathematical means of dynamical systems

theory is valuable and can be employed for the analysis of behavioral patterns emerged.

Regarding the developmental approach, in this thesis it is believed that only by proceed-

ing in an incremental manner can we overcome the complexity issues facing any attempt

to model the brain. The core methodology of computational neuroscience is represented by

means of computer modeling. The advantages of cognitive modeling in general and those

of simulation with functionally realistic neurons, in particular, are outlined below.

1.1.1 Why cognitive modeling?

Experimental investigations in neuroscience can provide a detailed characterization of the

chemical processes that underlie cognitive processes, but what matters for most scholars in

cognitive science are not the details themselves, but the principles that are embodied in these

details (McClelland, 2000). What is essential about the computational models is that they

enable researchers to explore the nature of these principles, by implementing on a computer

the underlying mechanisms (Levine, 2000; Rolls and Treves, 1998; O’Reilly and Munakata,

2000).

Furthermore, it is important to view the computational modeling of the brain processes from

the reconstructionist paradigm. This concentrates on the process of constructing human cog-

nition from the action of a large number of interacting components (McClelland, 2000). The

emphasis is on investigating the emergent phenomena which arise from these interactions,

and which is not obviously present in the behavior of individual elements (Cleeremans and

French, 1996; O’Reilly and Munakata, 2000).

Computational modeling allows manipulation and control of variables more precisely than

can be done with a real system. This enables the researcher to explore the causal roles of

different components (see the modeling of dendrites role in auditory coincidence detection

in Agmon-Snir et al., 1998). Computer modeling allows testing of hypothesis, but it is also

a powerful means of generating new and original hypothesis. A computational model can

provide novel sources of insight into behavior by providing alternative explanations of a

phenomena (see the new hypothesis on pattern recognition in a Purkinje cell in Steuber

and De Schutter (in press)). Finally, when creating a computational model, one has to be

4
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explicit about assumptions and about exactly how the processes work (O’Reilly and Mu-

nakata, 2000).

Computational neuroscience differs from previous approaches to neural modeling (see the

connectionist paradigm, Rumelhart and McClelland, 1986) in that, researchers in the area

believe that understanding the way the brain computes is very closely dependent on the

anatomical and physiological details of the neural components. Hence, it focuses upon the

simulation of the cortical functions by using neural models that are in agreement with the

structure and physiology of real neurons.

1.1.2 Why spiking neurons?

Cognitive models developed in the previous decade, dominated by the connectionist psy-

chology paradigm (Rumelhart and McClelland, 1986) have neglected the spiking nature of

the neurons. These models have been usually constructed based on a neural model with

sigmoid activation function that gives a continuous, real-valued output. Networks of such

neurons have proven very powerful computationally (O’Reilly, 2001). Moreover, they have

been supported biologically by the long-standing belief in neuroscience that information in

the brain is carried mainly in the neurons discharge rates (for a review see Recce, 1999).

Recent observations of how fast computations take place in the visual brain has questioned

whether the firing rate interpretation alone can account for rapid neural information pro-

cessing (Thorpe and Gautrais, 1997). Experimental evidence has been accumulated in the

last years to indicate that biological neural systems use the timing of single action potentials

to encode information (Abeles et al., 1993; Gerstner et al., 1996; Rieke et al., 1997). Conse-

quently, learning that information can be encoded in the temporal pattern of neuron firing,

the research on information processing in neural systems has focussed on investigating com-

putations with spiking neurons (Gerstner and Van Hemmen, 1994; Maass, 1995; Rieke et al.,

1997; Stevens and Zador, 1998).

This research stream has given rise to a new generation of neural networks, referred to as

pulsed neural networks and has focused on providing a mathematical description of the com-

putational properties of biological neurons (Gerstner, 1999; Maass, 1999). Several alternative

theories to the rate–coding hypothesis have been proposed, which suggest different schemes

for where the neural information may be contained, such as in the timing of the spikes, and

in the correlated activity of neurons (Stevens and Zador, 1995; Recce, 1999).
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The computational work of this thesis is based on a simplified spiking neural model that

focuses upon several aspects of the biological neuron function. Compared to the classical

rate–coding neuron, this model accounts for the spiking nature of real cells and allows differ-

ent modes of computation and learning. On the other hand, in comparison with structurally

realistic neural models, it accounts only for a limited number of computational aspects, with

the advantage of being simple to analyze and to simulate in a large–scale network of neu-

rons.

The development of the new generation of spiking neural networks has necessitated the de-

sign of dedicated simulation environments. Several simulation frameworks for the realistic

modeling of biological neurons (Hines and Carnevale, 1995; Bower and Beeman, 1998) or

for computation with simplified models (Delorme et al., 1999; Sougné, 1999) have been cre-

ated in the last decade. In our case, the choice of a modeling environment was motivated

primarily by the ability of the system to support the development of a family of models

required by current and future work goals. What seemed to be the best solution was to

use a general-purpose simulator, regardless of the neural model implemented, which was

extended to allow computations and learning with spiking neurons. The simulator chosen

is a classic neural networks simulator, SNNS: Stuttgart Neural Network Simulator (Zell et

al., 1992), whose extension for modeling of spiking neurons is referred to, in this thesis, as

SpikeNNS.

To conclude, this thesis advocates the use of the computer simulation methodology in order

to investigate computational principles of the cortex. Our work is aimed at providing an

illustration of how cognitive brain functions can be grounded at the neural level. In doing

this, we employ simulations with biologically inspired neural models. The general aim is to

explore within a developmental approach how emergent properties of the brain are high–

level effects that depend on low–level computational properties of the basic constituents.

This goal is investigated with a number of models of specific cognitive phenomena.

1.2 Identifying difficult cognitive problems

1.2.1 Neonatal imitation

Imitation is an essential behavior for cognitive development in infants, because it serves

communication and rapid acquisition of adaptive behavior and is an alternative to expen-
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sive trial–and–error learning (Butterworth, 1999). Meltzoff and Moore (1977) have shown

that infants as young as 12–days–old can imitate facial actions of caregivers, such as tongue

protrusion, mouth opening and manual gestures. Their findings served as an essential testi-

mony to the existence of imitation in newborns and suggested the possibility that immediate

imitation is a fundamental mechanism of communication in humans (Nadel and Butter-

worth, 1999). Since the publication of their original results, a large number of studies have

been issued to investigate the scale of the neonate imitation phenomena. A range of facial

expressions and hand gestures, as well as deferred imitation capacity, have been described

with respect to the age of onset and generalization capacity (Kugiumutzakis, 1999; Meltzoff

and Moore, 1999).

The ’holy grail’ for the theories of neonatal imitation has been to elucidate the mechanisms

whereby infants are able to connect the felt but unseen movements of the self with the seen

but unfelt movements of the others (Butterworth, 1999). This process is considered to re-

quire an inter–modal mapping, that is, a transfer of information between different percep-

tive modalities (i.e., visual and somatosensory) in order to control the imitative acts. A com-

mon belief is that proprioceptive feedback on self-produced movements can be compared to

the visually specified target in a supra-modal (Metlzoff and Moore, 1999) or amodal frame-

work (Trevarthen et al., 1999).

To us, neonatal imitation behavior represents the challenging problem. At a deeper analysis,

it appeared to be the ’tip of the iceberg’ of a more general problem of brain computation:

sensory fusion or cross–modal matching of information. That is, the basic computational

demand for imitation is met by the transfer of information between different modalities. In

this way, it led us to the fundamental topics of perception–action coupling and sensorimotor

coordination.

1.2.2 Visuomotor coordination

Most human and animal movements are under continual sensory guidance. Even a simple

task such as reaching and grasping an object, requires the analysis of visual information to

trigger a reaching movement and the integration of proprioceptive information and tactile

sensation to tune the grip to the weight, friction, and shape of the object (Kandel et al., 2000).

That is, purposeful action is possible through the integration of sensory signals coming from

various sources (vision, hearing, touch) and their translation into a set of motor commands
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to the muscles (Massone, 1995; Kandel et al., 2000).

Consequently, significant efforts have been dedicated in the last decades to the understand-

ing of the computational mechanisms that support sensorimotor coordination in neural sys-

tems. Particular attention has been given to the development of coordination between the

eye and the hand for reaching movements (see Caminiti et al., 1992). One reason is repre-

sented by the huge applicability, that a mechanism which allows the correct transformation

of visual signals into motor output, would have in the implementation of artificial systems

capable of online, adaptive motor control (Zeller et al., 1995; Weng et al., 2001). Another

motivation is that by understanding the brain computations that underlie reaching move-

ments, it will be possible for humans to control a robotic arm solely through the power of

thought (Nicolelis and Chapin, 2002).

Despite the efforts of classical artificial intelligence solely, it seems that the behavioral capa-

bilities of biological organisms can be simulated only by closely reproducing neural com-

putational mechanisms. Consequently, several recent proposals have been made for a more

biologically inspired modeling of visuomotor coordination (Burnod et al., 1992; Bullock et

al., 1995; Zeller et al., 1995). These attempts are facilitated by the development of a new

conceptual scheme of cortical control of reaching movements.

Research on the visual guidance of arm–reaching movement has made significant progress

in the recent years, in explaining control theory formalisms such as the ’coordinate transfor-

mation’ (i.e., sensorimotor transformation), in terms of computational properties of single

neurons and networks of neurons (Andersen et al., 1997; Kalaska et al., 1997; Caminiti et al.,

1998; Burnod et al., 1999). Details regarding the manner in which the brain solves the sen-

sorimotor mapping have cumulated and have given rise to an integrative framework that

links neurophysiological and computational aspects and allows the ready implementation

of the latter in terms of the former (Bullock et al., 1995; Burnod et al., 1999).

What is still needed, are models whose architecture is supported by anatomical evidence,

composed of elements that correspond as closely as possible to known neural cell types, and

whose functionality meet psychophysical criteria (Bullock et al., 1995). It is this challenge

that motivates part of the work presented within this thesis. The advantage of modeling the

neurophysiological processes involved in the cortical control of reaching is bi-directional.

Firstly, more adaptive and flexible models can be obtained. Secondly, models can be used to

test computational principles and eventually to reveal unknown mechanisms of visuomotor

control of movement.
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1.2.3 Cortical control of motion direction

The human motor system is organized in a functional hierarchy, with each level concerned

with different decisions (Kandel et al., 2000). Voluntary movements are organized at the

highest level of the frontal cortical lobes, in the premotor and primary motor cortex. These

areas are involved in the preparation, execution and adaptation of movement. Movements

of the arm, such as reaching or grasping, involve multiple joints and require precise acti-

vation of the skeletal muscles. This raises the question of whether cells at the cortical level

control muscle activation or do they encode more global features of the movement, such as

direction, amplitude, or speed (Kakei et al., 1999). Today, there is substantial evidence that

the direction of movement is represented at the cortical level, in the activity of large pop-

ulations of cells that are broadly selective to the direction of motion (Georgopoulos et al.,

1984).

Feature detection is not only a characteristic of motor cells, but represents an essential prop-

erty of neurons in the brain. It means that neurons respond to a particular feature of the

stimulus (i.e., orientation, direction, frequency of signal) and specialize in detecting a range

of values of that feature in the input space (Hubel and Wiesel, 1962). The dedication of neu-

rons is very widely distributed in the brain. For instance, directional selectivity has been

described for neurons in the visual, motor, and touch cortex (Kandel et al., 2000). The spe-

cialization of the neurons generally occurs by the way each cell is connected with other cells,

from the input layers or within the same layer, and it results in the emergence of cortical fea-

ture maps (see orientation visual maps in Blasdel, 1992). The development of these maps

can be modeled through a process of self-organization and topographical mapping of the

input space into the network nodes (Kohonen, 1984).

Despite the substantial evidence indicating that directional tuning is an essential feature of

the motor cortical neurons, it is not clear yet how the cortical control of motion direction

is developed. This contrasts with the detailed anatomical and computational knowledge

existent on the development of sensory, and in particular, visual maps (Obermayer et al.,

1990; Douglas et al., 1991; Blasdel, 1992; Sirosh, 1995). Nevertheless, it is believed that the

development of visual preferences may be based on a few design principles that in turn

rely on very general mechanisms utilizing the input structure of the system (Niebur and

Wörgötter, 1992).

Part of the work presented in this thesis concerns the simulation of the process whereby
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neurons in the motor areas develop directional selectivity. Firstly, modeling this process can

offer insights into whether directional tuning of motor cells is innate or acquired. Secondly,

the investigation of the functional principles of motor cortex can show in what degree the

organizational mechanisms of the sensory cortices also operate in the motor areas. Thirdly,

understanding the way the motor cortex organizes itself to control the direction of motion is

highly important for explaining the development of sensorimotor coordination as a whole.

Furthermore, current models of motor control which implement the control of end–effector

direction, lack a developmental model of how neurons at the cortical level acquire direc-

tional selectivity (Bullock et al., 1993). Hence, we believe that the modeling of the forma-

tion of directional motor map may have important implications for neurophysiology and

robotics.

1.3 The problem statement

Most generally, the research presented in this thesis is aimed at investigating how cognitive

functions in the brain can emerge from the properties of basic components, when these inter-

act and function cooperatively. This objective is narrowed down to the study of two topics:

cortical control of movement direction and visuomotor mapping of directional information.

Our detailed research objectives are:

� Modeling of the self–organization of motor cortical neurons for coding the direction

of movement.

� Modeling of the alignment of visual and motor neural representations for the guidance

of directional movements.

Note that these objectives are related. That is, by achieving the self–organization of the

motor directional map, the organized network can be used in the next stage for the devel-

opment of visuomotor mapping.

The original contribution of our models is represented primarily, by the investigation of the

two topics described above within the biologically inspired computational framework, of

spiking neural networks. Secondly, the motor directional map model represents a first at-

tempt to simulate the emergence of cortical directional selectivity within the self–organization

paradigm (Kohonen, 1984). The resulting representation of movement will be compared to
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the neurophysiological data that describes the coding of direction of movement in the motor

cortex (Georgopoulos et al., 1984; Georgopoulos et al., 1993). If the model succeeds in de-

veloping neural directional selectivity with a similar profile to that of real motor cells, than

we have a computational hypothesis for how the population coding emerges in the motor

cortex. Learning the visuomotor mapping of directional information in the conditions of

a population coding in the motor area represents another innovative feature of our mod-

eling work. This has computational and neurophysiological relevance for the learning of

visuomotor mapping.

In order to achieve these main objectives, they are preceded by the design of a modeling

environment for networks of spiking neurons. When modeling large–scale pulsed neural

networks with plastic synapses, the time efficiency of the simulation becomes an essential

issues in the design of the simulator (Jahnke et al., 1999). A number of strategies are imple-

mented and compared and an innovative event–driven mechanism is proposed to reduce

the time of simulation.

1.4 Thesis outline

The structure of this thesis is organized as follows.

Chapter 2 provides a biological framework of cortical control of motion direction, for use

in our modeling work. It introduces the self-organization paradigm for biological modeling

of cortical feature map formation. Finally, it reviews several recent neural network models

that address issues of cortical coding of motion direction.

Chapter 3 introduces a number of new theories on the biological and computational mecha-

nisms of perception–action coupling. Next, it focuses upon the description of an integrative

framework of how the visual guidance of arm reaching is implemented in the brain. A

review of several biologically inspired models of learning of visuomotor coordination is

presented.

Chapter 4 focuses upon the description of the implemented spiking neural model. It presents

how information can be communicated in the timing of single spikes, what types of compu-

tations are implemented and at what level of detail. Learning with spiking neurons is also

discussed.
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Chapter 5 presents the implementation of the SpikeNNS simulator. Design issues are dis-

cussed, with particular attention given to the strategies used to increase the time–efficiency

of the simulation. The configurable features of the simulator are outlined.

Chapter 6 describes in turn, the model of the motor cortex self-organization and that of

visuomotor mapping learning. The results of the simulations are analyzed and discussed in

comparison with current neurophysiological data and with previous modeling work.

Chapter 7 is devoted to a final discussion of the neurophysiological and theoretical implica-

tions of our models. It also proposes the potential integration of the models within artificial

motor control systems and it proposes possible avenues of future work. The relevance of

our visuomotor mapping model to the imitation problem is discussed in the end.
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Part I

Neurobiology and models of motor

control of direction
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Chapter 2

Control of movement direction

The state of the art in biological motor control reflects a long–standing debate concerning,

whether cortical neurons encode parameters of hand path rather than muscle activity, and

whether the central nervous system uses spatial coordinates, rather than joint or muscle

coordinates (Bizzi and Mussa-Ivaldi, 2000; Johnson et al., 2001). This is related to a shift in

the main paradigm of motor control, from correlating primary motor cortical neuronal firing

with movements of isolated muscles (Scott and Kalaska, 1995; Scott, 1997) to correlating

neuronal firing with whole arm movements (Georgopoulos et al., 1984; Schwartz et al., 1988;

Caminiti et al., 1991). Pivotal to this change of framework were the experimental studies of

Georgopoulos and colleagues (1982, 1984), showing that the discharge rate of primary motor

cortex neurons is tuned to the direction of arm movement.

Whether muscles or movements are represented in the motor cortex, is related to the dis-

tinction between planning and execution of movements (Bizzi and Mussa-Ivaldi, 2000). Fur-

thermore, it represents an important aspect for any developmental approach of motor cortex

self–organization. The purpose of this chapter is to provide a biological framework of motor

control for use in our modeling work. Considering the existing controversies in the research

on human motor control, we intend to marshal and evaluate neurophysiological and psy-

chophysical evidence in support of the working hypotheses of the thesis.

Section 1 examines experimental evidence for the hypothesis that motor areas plan move-

ment in spatial coordinates and represent abstract parameters of the hand path. It includes a

discussion of the planning–execution distinction and of the cortical representation of motion

direction and an introduction of the population coding scheme. Section 2 focuses upon the
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organization of cortical feature maps and introduces the means for the simulation of their

development. One of the most successful approaches to modeling the formation of brain

maps is the self–organizing feature map (Kohonen, 1984). Two adaptations of the original

algorithm are outlined, based on learning in the lateral synapses and spiking neural mod-

els. Section 3 presents a review of a number of recent models that address the issue of

spatial coding of directionality. In the absence of previous modeling work on motor direc-

tional maps formation, inspiration can be drawn from models of visual maps organization

(Farkaš and Miikkulainen, 1999) or from simulations which address population coding of

movement (Lukashin and Georgopoulos, 1994).

2.1 Biological motor control

Movement of primates is the result of information processing in a complex hierarchy of

motor centers within the nervous system, which yields three levels of control: the spinal

cord, brain stem, and motor cortex (Kandel et al., 2000). The highest levels of cortical motor

control are often associated with the premotor regions, which are the lateral ventral cortex,

the dorsal premotor cortex and the supplementary motor areas. The lowest cortical level is

occupied by the primary motor cortex.

The premotor cortex has a major role in coordinating and planning complex sequences of

movements. It integrates sensory information from the posterior parietal cortex with exec-

utive inputs from prefrontal lobes. It projects to the primary motor cortex, which directly

controls simple movements of the limbs. Both premotor and primary motor cortex project

to the brain stem and the spinal cord. The spinal cord is the lowest level of the hierarchical

organization that is directly responsible for executing movements (Kandel et al., 2000).

2.1.1 Distinction between planning and execution

The dominant view of how biological motor control takes place is that the brain forms a

neural representation of a movement before its execution, within which it encodes certain

parameters of the movement itself (Schmidt, 1988; Wiesendanger et al., 1992; Kandel et

al., 2000). The concept of motor program has been introduced by Bernstein in 1967 (Kandel

et al., 2000) and elaborated by Schmidt (1988). He argued that people do not learn spe-

cific movements, instead they construct generalized motor programs and produce different
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movements by varying the parameters (e.g., duration, level of force) that determine the way

in which movements are constructed.

The existence of some abstract plan of action that is actuator–independent and specifies the

important parameters of the movement to be executed has been particularly useful for ex-

plaining the phenomena of motor equivalence. Motor equivalence states that individual mo-

tor actions share important characteristics even when performed in different ways. Hand-

writing is perhaps the most representative example (Kandel et al., 2000).

The motor programming paradigm has been recently challenged by the dynamical view

of behavior, which considers that stable patterns of behavior and the transitions between

them emerge naturally from the dynamics of complex systems and do not exist a priori in

some independent form (Kelso, 1988; Van Gelder, 1995). Further proposals have been made

to suggest that the dynamical and computational view are nevertheless compatible, and

that a dynamical system (e.g., the motor system) can be analyzed in terms of its intrinsic

computational components (see Crutchfield, 1998).

The motor planning paradigm supports the hypothesis that planning (or response selec-

tion) and execution of movement constitute two separate stages of information processing

(Bizzi and Mussa-Ivaldi, 2000). The common view on how these processes take place is that

response selection and implementation are realized through a sequence of transformations

between three major levels of representation: (1) extrinsic kinematics, such as motion of the

hand through space; (2) intrinsic kinematics, such as joint motions; (3) dynamics, such as the

causal forces that produce movement (Kalaska, 1995).

Evidence for the distinction between planning and execution came from two sources:

� Psychophysical experiments showing that movement kinematics, namely the trans-

formation from extrinsic to intrinsic kinematics, are planned independently of the dy-

namics of musculoskeletal system in which movement occurs. Morasso’s experiments

first suggested that motor goals as simple as reaching and pointing are planned by the

brain in terms of extrinsic coordinates representing the motion of the hand in space

(Morasso and Mussa-Ivaldi, 1982; Shadmer and Mussa-Ivaldi, 1994; Bizzi and Mussa-

Ivaldi, 2000).

� Neurophysiological data suggesting that motor cortex plans movement in spatial co-

ordinates (see Section 2.1.2 below).
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2.1.2 Motor planning in spatial coordinates

In the introduction to this chapter, it was mentioned that a long–standing controversy in

biological motor control is the question about whether muscle dynamics or movement kine-

matics are represented in the motor cortex (Kalaska et al., 1992; Johnson et al., 2001; Flash

and Sejnowski, 2001). The debate is directly related to the issue of which coordinate system

the brain is using to encode movement: the spatial (extrinsic) coordinates frame, which rep-

resents movement in the Cartesian space or the motor (intrinsic) coordinates that represents

motion in terms of the actuator dynamics, such as the joint and muscles coordinates. The

answer to this question is highly relevant to understanding how visual to motor transfor-

mation takes place, and if the brain is directly involved in computing the inverse dynamics

of movement, or only the kinematics transformations (see also discussion in Section 3.1.1).

If cortical planning were to take place in motor (joint or muscles) coordinates, it would have

the advantage of taking into account the physical constraints but it may result in movements

that are not adequate in the task space (Hildreth and Hollerbach, 1985). That is, because the

joint–to–spatial coordinates transformation is a nonlinear mapping (see Section 3.1.1) and

programming a straight line in joint coordinates would generate a complex curved end–

effector trajectory (Figure 2.1a). On the other hand, planning in hand coordinates gives rise to

straight hand trajectories, but requires more coordinate transformations and do not incor-

porate the limitations of the joints and muscles (Figure 2.1b).

Evidence for the motor cortex planning movement in spatial coordinates came from numer-

ous neurophysiological experiments concerned with neural coding of the movement scalar

parameters (i.e., direction, speed or amplitude) by recording the activity of single cells in the

cortex (for a review see Georgopoulos et al., 1993; Johnson et al., 2001). The breakthrough

work of Georgopoulos and colleagues (1982, 1984) demonstrates the existence in the motor

cortex of the monkey, of a correlation between the cells’ firing patterns and the direction

of hand movement for reaching in two dimension. Further investigations demonstrate that

directional tuning is a prominent feature of cortical neurons.

Directional selectivity has been described in the dorsal premotor cortex and primary motor

cortex for movements in both 2-D and 3-D space (Schwartz et al., 1988), during manual

tracking of visual targets (Johnson et al., 1999), for coding of finger and wrist movements

(Georgopoulos et al., 1999), for drawing movements (Schwartz, 1994), and during instructed

delay reaching tasks (Crammond and Kalaska, 1994; Johnson et al., 1999). Activity of motor
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(a) Straight line in JOINT space (b) Straight line in HAND space

Figure 2.1: Coding of movement in hand and joint coordinates. (a) A straight line in joint
coordinates generates a complex curved hand trajectory. (b) A straight line in Cartesian co-
ordinates requires a relatively complex elbow and shoulder joint movement (adapted after
Hildreth and Hollerbach, 1985).

cortical neurons is also modulated by other parameters of movement kinematics, such as

amplitude (Messier and Kalaska, 2000) and speed (Reina et al., 2001).

On the other hand, there is a large amount of experimental data suggesting that activity in

the motor cortex reflects the onset and magnitude of muscle activity in single and multi–

joint movements and implies that cortical motor neurons encode the dynamics of limb

movements as well as a postural signal, instead of specifying only the kinematics of mo-

tion (Werner et al., 1991; Burnod et al., 1992; Scott and Kalaska, 1995; Scott, 1997).

Several attempts were made recently to explain these apparently contradictory findings

(Wise et al., 1997; Kakei et al., 1999; Shadmehr and Moussavi, 2000). A unifying approach

considers that experimental data actually reveals combinatorial properties of single neuron

activity. In this view, the discharge rates of cells signal different scalar parameters of move-

ment (direction, amplitude, or speed) as well as muscle forces and postural signals (Johnson

et al., 2001). It was also suggested that motor cortical activity at the population level, may

encode different types of information, which change from visual to motor aspects over time

in a trial sequence (Zhang et al., 1997). Multiple coordinate systems and reference frames

may also exist in the parietal and motor frontal lobes with the purpose of implementing a

gradual mapping of visuo-motor information (Andersen et al., 1997; Johnson et al., 2001, see

also Section 3.2).
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To summarize, there is neurobiological and psychophysical evidence for a distinction at

the cortical level between planning and execution of movement. The dominant view is

that there is a cortical, abstract plan of action, which specifies the important parameters of

movement, such as direction. It is also acknowledged that activity of motor cortical neurons

co–varies with the dynamics of limb movements. However, it is believed that scalar param-

eters are encoded in the firing of a large number of the neurons that are active during the

preparation and onset stages of movement.

2.1.3 Cortical encoding of movement direction

Apparently, the problem of coding the direction of movement has two possible solutions:

the single cell representation or the neural population coding scheme. The simplest method

would be to have single cells sharply tuned to one direction of motion, which would be

activated only when movements in that particular direction are issued (such a model is

implemented in Bullock et al., 1993). Instead, empirical studies of neural response show

that in many brain systems, sensory information is distributed throughout a population of

neurons (for a review see Abbott, 1994). In these ensembles, individual neurons are broadly

tuned to a stimulus, in such a way that the individual firing rate reflects the information

coded, however an accurate estimation of the stimulus can be realized only based on the

spike trains coming from many neurons (Abbott, 1994; Rieke at al., 1997).

A population coding scheme has the advantages of suppressing the fluctuations in the signal

of a single neuron and of being resistant to damage. Various methods have been developed

to describe how spike trains from different cells are combined to reconstruct the properties

of an external event (Abbott, 1994; Gielen, 2001; Gerstner and Kistler, 2002). A popular re-

construction method is the population vector scheme, a method to encode and decode stimuli

in a distributed way by using the joint activities of a number of neurons (Georgopoulos et

al., 1986; Seung and Sompolinsky, 1993).

Preferred directions of neurons and population coding

In their original research, Georgopoulos and his colleagues (1982, 1984) found that neurons

in the premotor and primary motor cortex are selective to the direction of motion. Motor

neurons seem to have a preferred direction, which is signaled by a change in the neural
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Figure 2.2: Cortical neurons with different preferred directions are active during movement
in a particular direction. The eight clusters represent the activity of a population of neurons,
during reaching movement in eight different directions. The population vectors (solid ar-
rows) closely match the directions of movement of the limb (dashed lines) (adapted from
Kandel et al., 2000 based on data from Georgopoulos et al., 1982).

activity with the direction of hand movement. The neurons fire most briskly for movements

in a preferred direction and are almost silent for movements in the opposite direction.

The authors proposed that movement in a particular direction is determined not by the

action of single neurons but by that of a broad population of neurons (Figure 2.2). The

direction of movement at time � is estimated by a population vector � ��� that yields the sum

of each cell � preferred direction ��, weighted by the cell activity ��, given by the formula:

� ��� �
�
�

����� ��� (2.1)

The relation between the discharge rate of the neuron and the direction of motion was de-

scribed by a cosine tuning function given by the formula ����� � �� � �� � 	
��� � ���, where

�� and �� are regression coefficients and � � �� is the angle formed by the cell’s preferred

direction and the direction of current movement � . More recent studies reveal that cells in

the monkeys arm area can show bimodal tuning functions and that, their optimal tuning is

actually narrower than the cosine function, namely with an average of ��Æ (Amirikian and

Georgopoulos, 2000).

The population vector is a robust measure and a good predictor of motion direction during

the preparatory stages of movement. It was shown that during an instructed delay period,
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the population vector gives a reliable signal concerning the direction of movement that is

later executed (Georgopoulos et al., 1993). However, several studies recording neural activ-

ity in motor cortex during reaching described a ’rotation’ of the neuron’s preferred direction

with the evolution of movement (Caminiti et al., 1991). At the population level, the average

change was found similar to the change in the shoulder angle, suggesting that postural sig-

nals and muscles dynamics may also be reflected in the motor cells activities (Burnod et al.,

1992). This illustrates that the interpretation of population activity depends on the neurons

considered for averaging and on the proper characterization of neuronal response (Gielen,

2001).

Further studies of the cortical encoding of motion direction suggest that directional informa-

tion can also be contained in the synchronous activity of the motor neurons (Hatsopoulos

et al., 1998). Hatsopoulos and colleagues have shown that significant synchrony between

directionally tuned neurons occurs clustered around the onset of movement (e.g., a time

window of 400 ms) and may encode information distinct from that provided by firing rate

modulations alone. The mechanism, which causes motor neurons to synchronize their ac-

tivities, may depend on common input within the same area or from other areas, or may be

due to network interactions among subsets of neurons coding for similar preferred direc-

tions (see discussion in Section 6.2.5).

With respect to how the central nervous system translates the cortical directional informa-

tion into the desired limb movement, a simple neural networks mechanism was proposed

by Georgopoulos and colleagues (Lukashin et al., 1996). This transformation was imple-

mented with a three-layered feedforward network, which maps impulse activity recorded

in the monkey’s motor cortex into motor actions of a simulated actuator. Activities of units

in the input layer are given by the spike trains recorded from �� directionally tuned motor

cells. The intermediate layer integrates these inputs by using a sigmoid activation function

and maps them into an output layer that determines the contraction forces on the muscles

by changing the rest lengths. The network connectivity is set so that the mapping from the

output layer to the actuator determines a synergistic activation of muscles to generate the

required motor output. As a result, the actuator responds to the motor cortical commands

with a good fidelity. Another example of how everything can be combined, from plans to

actions, is presented in the final chapter, where we discuss the possible applications of our

work (Section 7.2).
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2.1.4 Summary

The goal of the previous subsections was to define a theoretical framework for biological

motor control to use in our simulation work. The modeling work described in the remainder

of this thesis rests on three main theoretical assumptions derived from this framework:

� Brain centers form a representation of movement (i.e., plan) before its execution. Our

working concept of motor plan considers the existence in the motor cortex, of a neural

representation of movement, built in advance of its initiation. This concerns initial

objectives of movement, without specifying details of implementation. We consider

this hypothesis as being a weak assumption, completely supported by the existence in

motor areas of preparatory activity that codes movement information prior to its onset

(Johnson et al. 1999; Messier and Kalaska, 2000).

� This initial neural representation codes abstract parameters of hand-path. Based on

experimental data on motor cells directional selectivity, we consider that activity oc-

curring during movement preparation encodes the direction of whole limb movement.

We also consider that neural activity in motor areas is correlated with the direction of

movement immediately after movement onset (i.e., first 400 ms) (Georgopoulos et al.,

1984).

� The direction of movement is coded in spatial coordinates and is represented in the

activity of a large population of motor neurons. The former definition follows from

the previous assumption and it states that the motor direction is represented in hand

coordinates. The later assumption implies that directional information is provided by

the population vector, which is considered an accurate predictor of movement (Geor-

gopoulos et al., 1993).

In the remainder of this chapter, we focus on computational and modeling aspects of cortical

directional selectivity. As such, we introduce in the next section cortical feature maps and

the means to study their formation and development.

2.2 Self–organizing maps

Self–organization refers to spontaneous ordering tendencies observed in both artificial and

natural complex systems that consist of a large number of components that interact simulta-
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neously (Depew and Weber, 1999). The brain is such a self–organizing system that can learn

by itself, by changing (adding, removing, strengthening) the connections between neurons

(Kohonen, 1984; Kelso, 1995).

Sensory feature maps are an illustrative example of how the brain self–organizes to rep-

resent the external world by undergoing a process of abstraction, similar to the process of

principal component analysis (Haykin, 1994). That is, it suppresses trivial details and maps

the most important features of the input along the dimensions of the cortical map (Kohonen,

1984). A consequence of the tendency to compress the input space is the formation of topo-

graphic maps, in which the most important similarity relationships among the input signals

are converted into spatial relationships among responding neurons (Kohonen, 1984; Ritter

et al., 1992).

2.2.1 Principles of topographical maps organization

The topographic representation of input patterns is a key feature of brain design, for visual,

tactile and auditory data analysis and also for motor control (Kandel et al., 2000). This gen-

eral self–organization property of the cortex is supported by a set of functional and design

principles.

Neural feature detectors. Feature detection is a basic principle of cortical processing. By

the way each neuron is connected with other neurons within a network, it becomes special-

ized in representing certain features from the input space. The dedication of neurons is very

widely distributed in the brain, characterizing the activity of neurons in all sensory (visual,

auditory, somatosensory) and motor areas and employing different levels of the neural pref-

erence (e.g., from visual neurons sharply tuned to one attribute to the broadly tuned motor

neurons) (Kandel et al., 2000).

It is important to note that the optimal tuning width of the cells that take part in the neural

population code derives from trying to improve the quality of the code and to maximize

information content and is influenced by many factors (i.e., noise, dimension of the encoded

variable) (Eurich and Wilke, 2000; Gielen, 2001; Sompolinsky et al., 2001). Furthermore,

the traditional concept of neurons as dedicated processors of a single parameter (i.e., either

movement direction or force) has changed to reflect data showing that motor neurons, as

well as neurons from the parietal and visual cortex, signal a mixture of scalars and vectorial

parameters (Johnson et al., 2001; see Section 2.1.2).
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Activity-dependent mechanisms. Map formation is an activity–dependent process, demon-

strated by the existence of a critical period of development for the emergence of visual maps

(Hubel and Wiesel, 1970). The mechanisms of plasticity on a medium time scale rely on ac-

tivity dependence within intra–cortical circuits, with Hebbian preference to the most active

inputs and competition between hidden nodes. The activity–dependent means are probably

common to all cortical maps and play a role in normal functioning and the maintenance of

topographic maps. Much support for these computational hypotheses has been brought by

modeling studies simulating the formation and adaptation of sensory maps (for a review

see Miikkulainen et al., 1998).

Organization. Topographical mapping leads to the formation of a map characterized by:

� Nearby cells react to stimuli with similar features.

� Whole input feature space be covered.

� No presence of global order.

Plasticity. For a long time, cortical maps were considered as being static in adult animals.

The breakthrough research of Hubel and Wiesel first demonstrated that visual deprivation

change physiological and anatomical monocular organization of afferents into visual cortex

(Hubel and Wiesel, 1962; Hubel and Wiesel, 1970). Further evidence from studies on so-

matosensory deprivation in young animals (Merzenich et al., 1983) or nerve lesions (Sanes

and Donoghue, 1992) have shown that re-organization is a common feature of adult cortical

sensory maps. The experimental observations have been supported by computer simula-

tions that illustrate how reorganization can take place after sensory deprivation (Ritter et

al., 1992).

2.2.2 Characterization of sensory map layout

The primary visual cortex offers perhaps the clearest instance of feature map organization.

This visual area is organized into narrow columns of cells, which have similar receptive

fields and identical axes of orientation (Figure 2.3). Each orientation column also contains

complex cells that respond to movement in a particular direction across their receptive field.

The mapping of adjacent columns reveals a precise organization with an orderly shift in

axis of orientation from one column to the next. Approximately each three-quarter of a
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Figure 2.3: Orientation map in the macaque cortex. On the left, cortical areas that are most
actives at the presentation of a particular orientation are indicated by the corresponding
orientation color (bars on the right). The map shows features such as: (1) pinwheel centers,
around which orientation preference changes through �	
Æ; (2) linear zones, where orienta-
tion changes almost linearly; and (3) fractures, characterized by a discontinuous change of
orientation preferences. On the right, the enlargement of a pinwheel-like area is presented
(adapted after Kandel et al., 2000, based on data by Blasdel, 1992).

millimeter contains a complete cycle of orientation changes (e.g., pinwheel center). A com-

plete sequence of ocular dominance columns and orientation columns forms a hypercolumn.

This is the basic computational module of the visual cortex, which processes information on

orientation, binocular interaction, color and motion (Kandel et al., 2000).

The visual orientation map in Figure 2.3 illustrates three general principles of cortical de-

sign: local correlation, homogeneity, and isotropy (Niebur and Wörgötter, 1992). Within

a hypercolumn, isotropic subregions or linear zones are formed where neurons share the

same orientation preferences (i.e., are locally correlated). The map is homogeneous, because

there are no systematic differences between locations over distances much larger than a hy-

percolumn width.

Formation of visual feature maps has been extensively modeled, mainly by using variants

of the self-organizing feature map (SOM, Kohonen, 1984) with receptive fields and plastic

lateral connections (Obermayer et al., 1990; Sirosh, 1995; Miikkulainen et al., 1998; see also

Sections 2.2.4, 2.3.1). Well-studied examples are also the formation of tonotopic maps in the

auditory cortex of the bat, that is mapping of sound frequencies (Kohonen, 1984; Martinetz

et al., 1988; Kandel et al., 2000) and organization of somatosensory maps for the mapping of
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touch (Ritter et al., 1992).

2.2.3 Motor map organization

In contrast to the detailed knowledge existent on the functional architecture of sensory cor-

tical areas (visual and auditory), the organizational principles of the frontal motor regions

are much less clear (Sanes and Donoghue, 1992). Without an explicit description of the

architectural and functional principles, modeling of motor cortical computations is more

difficult. Our view is that there are two milestones in modeling motor cortex development:

(1) the characterization of connectivity in motor cortex and (2) understanding the nature of

the training information which drive this process.

The latter requirement lies at the heart of a self–organizing process. That is, organization of

a feature map follows from projecting the similarity relationships between input signals into

spatial relations in the output map units. Whilst these relationships are easily recognized

in the input space of the visual (retinal receptive fields), somatosensory (touch receptors

signals), or auditory (sound frequencies) mapping, in the case of the motor cortex it is less

obvious what sort of data is available for training and which are its characteristics.

With respect to the organization of directional neural maps in the motor cortex, several

points are noteworthy: (1) neurons are broadly tuned to the direction of arm movement,

with a unimodal tuning, close to the cosine-function; (2) cells in a motor cortical column

tend to have similar preferred directions; (3) particular directions are multiply represented

in the motor cortex; and (4) neural preferred directions cover a directional continuum (Geor-

gopoulos et al., 1984; Lukashin and Georgopoulos, 1994). Experimental findings have also

showed that the strength of temporal correlation between the firing of single cells decreases

with inter–electrode distance (Hatsopoulos et al., 1998). This suggests the existence of local,

short–range excitatory synapses. Concerning the functional characteristics of lateral connec-

tions in the motor cortex, Georgopoulos and colleagues (1993) estimated that the strength of

connection between two motor neurons is negatively correlated with the difference between

their preferred directions (see also our results in Section 6.1.5).

To summarize, cortical areas in the brain undergo a process of self–organization that is

driven by activity–dependent mechanisms and consists of a topology preserving mapping.

It leads to the specialization of neurons as feature detectors and the formation of topograph-

ical cortical maps, in both sensory and motor areas. The layout and development of topo-
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logically ordered maps was best described and modeled in the case of sensory (i.e., visual)

maps, starting decades ago with the seminal work of Hubel and Wiesel (1962).

Nevertheless, it is believed that development of cortical preferences may be based on a few

design principles, which in turn rely on very general developmental mechanisms utilizing

the input structure of the system (Douglas and Martin, 1991; Niebur and Wörgötter, 1993).

In this thesis, we adopt the view that developmental principles described for sensory areas

reflect general laws of cortical organization. Accordingly, they form the basis of our motor

cortex modeling work. Up to the present, this assumption was confirmed by most studies

providing evidence on motor cortex connectivity and plasticity (Georgopoulos et al., 1993;

Hess and Donoghue, 1994; Rioult-Pedotti et al., 1998; Xing and Andersen, 2000).

2.2.4 Role of lateral connections

The previous sections described the characteristics of cortical maps with respect to neuron

preferences within a columnar organization. The vertically oriented computational units

(i.e., neural columns) communicate with one another by means of horizontal or lateral con-

nections (Kandel et al., 2000). Until recently, the lateral connections were thought to have a

secondary role in shaping the cortex, with the primary role attributed to plasticity of thala-

mocortical afferents (see Miikkulainen and Sirosh, 1996).

New experimental and modeling studies suggest that lateral interactions might play a much

larger role in modulating and controlling the cortical response, in the representation of in-

formation and development of cortical maps (Douglas and Martin, 1991; Sirosh et al., 1996).

Several computational functions of lateral connections have been hypothesized:

� Recurrent lateral connections may provide a mechanism for activity normalization

(Somers et al., 1996) and mediate competition and synchronization over large dis-

tances of cortex (Usher et al., 1996).

� Lateral connections may form the substrate for encoding memories as attractors in the

cortical network (Taylor and Alavi, 1996).

� They could play a crucial role in the development of cortical columns representing

orientation, ocular dominance and spatial frequency (Sirosh, 1995; Miikkulainen et al.,

1996). The may also mediate reorganization of cortex in response to drastic changes
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in the input environment, such as retinal lesions and input deprivation (Gilbert and

Wiesel, 1992).

As mentioned before, most of the knowledge about the development and functions of lat-

eral connections has been based on studies of visual areas organization (Gilbert and Wiesel,

1992; Weliky and Katz, 1994; Douglas et al., 1991). Only recently, studies on the functional

topography of the auditory cortex (Read et al., 2001) and on the organization of cortical

maps on motor cortex (Sanes and Donoghue, 1992; Hess and Donoghue, 1994) brought es-

sential information on the spatial arrangements and the functions of horizontal connections

in other, than visual brain areas.

Lateral connections are found to be remarkably ordered. Horizontal connections wire to-

gether cells with similar response properties in different columns. In the visual cortex, hori-

zontal projections link columns with common ocular dominance and orientation selectivity

(Gilbert and Wiesel, 1992), as well as color selective cells with similar responses from differ-

ent blobs (Kandel et al., 2000). In the auditory cortex dorsoventral connections link regions

with matched characteristic frequencies (Read et al., 2001). In the motor cortex lateral con-

nections may link neurons with similar proffered directions (Georgopoulos and Lukashin,

1996). This organization is neither genetically determined nor static. The development of

lateral connections, like that of afferent connections, depends on cortical activity caused by

external input and represents correlation in the input (Hubel and Wiesel, 1962; Hess and

Donoghue, 1994).

Lateral connections are often reciprocal, and contact both inhibitory and excitatory cells.

Roughly ��� to �
� of the neurons in the cortex are GABAergic inhibitory interneurons

(Kandel et al., 2000). The importance of these neurons for controlling the positive feedback

loops between excitatory cortical pyramidal neurons has been revealed, for example, in the

epileptic-like effects of GABA antagonists (Grinvald et al., 1988).

Physiological studies on the cells of cat visual cortex suggest that individual axons inhibit

isotropic nearest–neighbor cortical columns and outside this core region may provide a type

of anisotropic lateral inhibition of cortical columns (Budd and Kisvárday, 2001). Mech-

anisms for long–range inhibition have also been described across the brain, possibly im-

plemented by subcortical mechanisms (i.e., thalamus and basal-ganglia) (Taylor and Alavi,

1996). Long–range competition is an important requirement for self–organization to occur

and, generally, realistic models of the cortex include both excitatory and inhibitory connec-
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tions, with inhibition being spread further than excitation (Kohonen, 1984; Sirosh, 1995).

To this point, we have briefly described the neurobiology of cortical feature maps, the way

the topology preserving maps form and adapt in the brain. In the remainder of this chap-

ter, we focus upon the modeling of this process in general, and of cortical directional map

development, in particular.

2.2.5 The Kohonen map

The self–organizing feature map (SOFM) was developed by Kohonen (1984) as a means to

explain the formation, in the sensory cortex, of ordered, two-dimensional representations

of multidimensional external world signals. Kohonen defined the self–organization process

running in the cortical maps as a topology–preserving mapping, which translates similarity

relations existent in the input space in topological relations between the projecting images.

Within this adaptive process, nodes in the output map converge to such values that every

unit becomes sensitive to a particular domain of input signals, in a regular order (Kohonen,

1984).

A basic Kohonen map consists of an input layer and an output map (also termed as compet-

itive layer). The input can be a multidimensional pattern represented by a vector, with each

unit coding the values of a dimension from the input pattern. Every unit in the competitive

layer receives a sum of weighted values from the input layer and is connected with a num-

ber of other competitive units, by excitatory and inhibitory lateral synapses (see Figure 6.1

in Section 6.1.1).

Kohonen maps are able to preserve the similarity relations in the input space, while realiz-

ing a dimensionality reduction, usually from a multidimensional input to a two–dimensional

(planar) output. The striped ocular dominance patterns are perhaps the most illustrative ex-

ample of mapping a three dimensional space (e.g., the visual world) into a two dimensional

surface (e.g., the cortex) (Kohonen, 1995).

The core of learning relies on the formation of ’clusters’ or ’bubbles of activity’, which con-

centrate the neural response around some location in the output plane (e.g., around the

maximally responding unit). The location 	 of the maximum is defined according to a best

match criterion between the input vector 
 and the weights vector � of each output unit �:

�
� ��� � �
�
�
�
� ���� (2.2)
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Next, around the maximally responding unit 	, a topological neighborhood �� is defined,

and the weights of all units within this neighborhood are subject of adaptation. The modifi-

cation of the selected weights �� at the time �� � is given by the formula:

����� �� � ����� � ��
��� � ������� for � � �� (2.3)

����� �� � ����� otherwise (2.4)

where � is the learning rate. The topological neighborhood �� starts fairly wide in the

beginning to allow the initial formation of the correct order and than is shrinked with time

until it comprises only one unit. In a similar manner, the learning rate � is slowly decreased,

such as for the final convergence of the map a low value of it is used (Kohonen, 1995).

The learning process resides in a ’winner-take-all’ strategy, where nodes in the output layer

are competing each other to learn the input vectors. During the presentation of each input,

the maps adapts in two ways. First, the weight vectors become a better approximation of the

input vectors, and second, the neighboring weight vectors become more similar. Kohonen

demonstrated that, combined, these two adaptation processes ensure the ordering of the

output map, so that the afferent weights ��� will become an ordered image of the input

vector 
. An essential role in the formation of a localized neural response of the network is

played by the lateral feedback system, with short-range excitation and long-inhibition. This

will be referred to, as a Mexican-Hat interaction profile (see Figure 5.8 in Section 5.3.2).

Variants of SOFM have been applied successfully to a huge number of domains, ranging

from monitoring and control in industrial tasks and telecommunications, to medical appli-

cations and robotic-arm control. Currently, the SOFM appears to be the de-facto standard

for biological modeling of cortical features map formation (for a review of self-organizing

feature maps applications see Kohonen, 1995).

Spiking self–organizing feature maps

Simulation of cortical maps formation using competitive Hebbian models was most com-

monly implemented based on the classical model of continuous, rate coding neuron (Ober-

mayer et al., 1992; Sirosh, 1995; Miikkulainen et al., 1998). In the last decade, alternative neu-

ral models, known as spiking neurons, have been developed in computational neuroscience

(Maass, 1997; see also Section 4.2.1). Conversely, the research focus was on exploring the

capacity of these neurons to perform fast computations in terms of single spiking events.
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Much of the work done in this direction was oriented towards the implementation of spike–

based Hebbian learning algorithms (Song et al., 2000) and less has been done with respect

to computations in spiking Kohonen maps. The few attempts made in this direction (Choe

and Miikkulainen, 1995; Ruf and Schmitt, 1998; Panchev and Wermter, 2001) propose differ-

ent ways of adapting the plastic weights, dependent on where they consider that learning

information is contained.

Choe and Miikkulainen (1995) adapted a well–known model of a laterally interconnected

self–organizing map (LISSOM; Sirosh, 1995) to study the development of orientation selec-

tivity in a network of spiking neurons. Their model owes much to the traditional firing rate

coding scheme, since learning of both afferent and lateral connection strengths is applied

in terms of neural discharge rates, after the network reaches a stable state of firing. The

resulting learning scheme is slow and does not take into account the information possibly

encoded in the timing and order of the spikes. Hence, it generally neglects the advantages

of spiking neural models.

A different approach to self–organization based on the timing of single firing events was

proposed by Ruf and Schmitt (1998). They developed a learning rule for a network of leaky

integrate–and–fire neurons, connected by short–range excitatory synapses and long–range

inhibitory connections. When an input vector �� is applied to the competitive network, each

output node receives a weighted sum of the afferent signals over all input units �,
�
�

��� ��
�
�.

The product � � �� represents a measure of similarity between the two vectors with respect

to the Euclidean distance (Kohonen, 1984). Hence, the earlier an output node fires, the

more similar its weight vector is to the input vector. Therefore, the competitive node whose

weights represent the best match of the input vector, namely the winner, will fire first.

Based on this logic, the authors defined learning of the afferent weights of output nodes in

terms of first spike timings. The weight of the connection � �� between the input neuron �

and the competitive neuron � is updated by the rule:

���� � �
���� � ��

����
���� � ����� (2.5)

where �� is the firing time of the � neuron and ���� is a time out limit.

Instead of the classic topological neighborhood, a temporal neighborhood of the winner

is implemented, based on the idea that the firing of a winner neuron drives the firing of

topologically close neurons and postpones the firing of remote neurons (e.g., due to the

Mexican–Hat–like shape of the connectivity pattern). Hence, learning applies only to the
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neurons which fired until ����. Moreover, the adaptation of afferent weights is scaled by the

distance between the firing time of the competitive neuron and the firing of the winner. This

learning rule has been tested with one and two-dimensional input patterns, on small scale

networks (10 and 25 neurons), where the lateral weights were slightly decreased during

training (no learning rule was implemented for the lateral synapses) (Ruf and Schmitt, 1998).

A variant of this algorithm was recently presented by Panchev and Wermter (2001), who

applied to afferent weights a variant of spike–dependent learning, based on the relative

timing of the pre- and post-synaptic spikes.

Regarding the biological plausibility of the learning algorithm described above, we can con-

sider the studies on visual information processing by Thorpe et al., (1996). Authors sug-

gested that during visual object recognition, the brain does not have time to evaluate more

than one spike from each neuron per processing step. Accordingly, Thorpe and Gautrais

(1998) proposed a coding scheme based on the time–to–first–spike, where only the first spike

of each neuron counts. This idea was supported by other experimental studies, which have

showed that most of the information about a new stimulus is conveyed during the first �


or �
 ms after the onset of the neuronal response (Tovee et al., 1993; VanRullen and Thorpe,

2001).

Hebbian learning in the lateral synapses

Section 2.2.4 emphasized the importance of horizontal connections in modulating corti-

cal neural activity and development of brain feature maps. However, the original self–

organizing feature map (Kohonen, 1984) and many of its variants account only for static

lateral feedback. This means a fixed connectivity, which has a role in shaping the network

activity, but is not subject to learning.

Recently, significant efforts have been made in studying the computational role of plastic lat-

eral connections within artificial neural network models of brain cognition (see Miikkulainen

and Sirosh, 1996). Most learning rules for lateral weights are based on the hypothesis of

Hebb, which observed that development in many parts of the brain appears to result due to

correlation–based synaptic adaptation processes. He proposed that

When an axon of cell A is near enough to excite cell B and repeatedly or con-
sistently takes part in firing it, some growth process or metabolic change takes
place in one or both cells such that A’s efficiency, as one of the cells firing B, is
increased (Hebb, 1949, page 62).
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Sirosh (1995), Miikkulainen and Sirosh (1996) were among the first who considered the role

of Hebbian adaptation on the lateral synapses during the simulation of a visual feature map

formation. The LISSOM model (Laterally Interconnected Synergetically Self–Organizing

Map, Sirosh, 1995) applies learning to both afferent and lateral connections. First, excitatory

and inhibitory lateral connections strengthen by the correlated activity of pre- and post-

synaptic neurons, computed as the neural activation after the map has settled in a stable

bubble. Second, normalization is applied, so that the total synaptic strength of the lateral

connections remains constant. Connection death is also allowed, by the fact that synapses

whose weights become very small are pruned.

Their success in modeling the formation of visual feature maps have brought compelling

evidence that lateral connections develop simultaneously with the afferent weights, depend

on cortical activity caused by external input, and represent the input correlation. The role

of learning in lateral synapses has been investigated within models studying the formation

of orientation (Miikkulainen et al., 1998) and directional maps (Farkaš and Miikkulainen,

1999), dynamic receptive fields (Sirosh et al., 1996), synchronous oscillations (Wang, 1996).

More recently, experimental neurophysiological investigations have shown that the relative

timing of the pre- and post-synaptic spikes plays an important role in determining whether

a synapse is potentiated or depressed (Markram et al., 1997; Zhang et al., 1998). Newer

formulations of the Hebbian rule have been explored for learning in pulsed neural networks

(Roberts, 1999; Song et al., 2000; see also Section 4.4).

In summary, in this section we introduced the design and developmental principles of corti-

cal feature maps. The self–organizing feature map was presented, as one of the most success-

ful modeling paradigms of cortical map development. The role of lateral feedback system in

the organization process was outlined, with a focus upon the plasticity of these synapses. A

learning procedure for a spiking self-organizing map, in terms of the timing of single spiking

events was described. The modeling work presented in this thesis explores the simulation

of directional motor map formation based on self–organization with spiking neurons and

plastic synapses.
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2.3 Models of cortical coding of directional selectivity

This final section on biological motor control reviews a number of neural network models

of cortical directional selectivity. Firstly, the simulation of a directional map development

in the visual cortex is presented. It was argued throughout the previous section that the

existence of neural feature detection and topographical maps in the brain might reflect the

manifestation of general design and developmental principles. Consequently, in our work,

the motor cortex modeling will be inspired by both neurobiological data and simulation

results on sensory map development. It is the scope of modeling work to explore which of

these principles and in what context, can they lead to the development of motor directional

maps.

Secondly, in the absence of modeling work on directional selectivity development in motor

cortex, inspiration can be drawn from two sources: simulations which address population

coding of motion trajectory (Lukashin and Georgopoulos, 1994) and arm-reaching studies

that require representation of directional information in the motor network (Bullock et al.,

1993). By reviewing these studies, we hope to ascertain how motor directional selectivity

might be implemented and whether it would be useful to have a model which develops

such a feature by unsupervised means.

2.3.1 Visual directional map formation

Most of the models of visual directional selectivity address the processes by which single

complex cells develop directional preferences due to the spatio-temporal properties of their

receptive field (Maex and Orban, 1996; Blais et al., 2000). With respect to feature map forma-

tion, the development of orientation and ocular dominance columns most frequently stud-

ied was (Sirosh, 1995; Erwin et al., 1995; Miikkulainen et al., 1998). Nevertheless, orientation

and directional maps in the visual cortex are functionally and anatomically related, reflected

by the fact that many of the cells with orientation preferences show orthogonal directional

selectivity (Kandel et al., 2000).

Recently, it was proposed to account for the emergence of directional selectivity in the pri-

mary visual cortex (V1) through self-organization, in a similar way with the development of

orientation or ocular dominance preferences. Farkaš and Miikkulainen (1999) built a model

of directional selectivity, based on a self–organizing map of leaky–integrator neurons with
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Figure 2.4: A fragment from the self–organized direction and orientation map in Farkaš
and Miikkulainen (1999). Each neuron is marked with a line that identifies its orientation
preference and perpendicular to it is represented the shorter line of directional preference.
The length of lines is proportional to the neural selectivity. Note that most of the neurons
become directional selective and only few of them show no selectivity.

sigmoid output functions. The input to the map consisted of �� sequences of moving bars,

whose direction of motion was perpendicular to their orientation. Only afferent weights

were subject of learning, according to the standard Oja’s rule. That is, the weight changes

proportional to the difference between the current input and the back–propagated output

(Oja, 1982).

After training, a neuron’s preferred direction was defined as the direction for which the neu-

ral output was highest. Each neuron in the map is also assigned orientation preference and

selectivity. A fragment of the self–organized directional and orientation map is shown in

Figure 2.4. The trained map shows several major characteristics described in biological di-

rectional maps: (1) most of the orientation–selective neurons are also directional selective;

(2) neurons’ preferred directions are perpendicular to their preferred orientation; and (3)

most of iso–orientation patches contain subregions with opposite direction selectivity.

In terms of the neuron response profiles, the model could not reproduce some aspects of

the behavior of biological directionally tuned cells. Thus, the response of a model neuron to

movement in the direction opposite to its preferred direction was found to be rather higher

35



Chapter 2: Control of movement direction

compared to the response measured in the brain maps. This excessively broad tuning of

neurons might be due to the absence in the model, of the lateral feedback, and particu-

larly of synaptic inhibition, which is known to provide the mechanism by which unwanted

responses are suppressed (Livingstone, 1998). A more recent model of visual directional

map formation has been proposed by Tversky and Miikkulainen (2001). The authors fo-

cus on implementing a delay–adaptation learning rule and explore its effectiveness for the

development of directional selectivity in a laterally connected self–organizing network of

integrate–and–fire neurons.

In a summary, only recently the formation of directional selectivity has been tackled within

the self–organization paradigm, in a similar manner with the development of other neural

response properties. Current models draw inspiration mainly from orientation maps simu-

lation, but much remains to be specified in order to obtain directional maps (visual or motor)

that are consistent with the biological observations.

2.3.2 Models of motor control of directionality

Our review of previous work on motor cortex modeling showed that only a limited num-

ber of simulation studies address issues related to the organization and development of

motor directional selectivity. So far, we are not aware of any simulation work aimed at

modeling self–organization of motor cortex, in a similar way with the models of visual map

formation (see Section 2.3.1). Instead, we will review in the remainder of this chapter two

categories of models with relevance to our goals: (1) neural network models concerned

with cortical coding of movement trajectory in the directionally tuned motor populations

of neurons (Lukashin and Georgopoulos, 1994; Lin et al., 1997); (2) simulation studies of

visually guided reaching, which require processing of directional information by the motor

cells (Bullock et al., 1993; Burnod et al., 1992).

Coding of trajectories by neural population vectors

It was pointed out in Section 2.2 that, compared to the experimental data available on the

visual cortex, much remains to be described with respect to motor maps organization and

functional principles. Recent modeling work by Lukashin and Georgopoulos (1994) pro-

duced compelling evidence that the strength of connection between neurons in a pair is
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correlated with the similarity of their preferred directions. This neural network simulation

was aimed at studying how different trajectories are encoded by the time series of neuronal

population vectors. At the initialization, each neuron in the network was assigned a pre-

ferred direction of motion. The neural trajectories coded by the network were obtained by

adding together, head–to–tail, the neural population vectors computed at short successive

intervals of time (see Equation 2.1). Next, the network was trained using the simulated

annealing learning to find a set of afferent connection strengths, which minimize the error

between the desired and actual movement trajectory.

After training, the organization of the network led to different trajectories realized by dif-

ferent neuronal subsets. The authors hypothesize that similarly, at the motor cortex level,

trajectories may be encoded by different sets of synaptic weights that permanently store the

information about the essential parts of hand path and do not change during the movement.

Consequently, the realization of a particular trajectory needs only one motor command, that

is a global activation of an appropriate neuronal subset. As already observed, their study

also suggests that neurons with similar preferred directions tend to be mutually excitatory

and those with opposite preferred directions tend to be inhibitory.

Lin et al. (1997) presented another study dealing with coding of directional information in

the firing activities of neurons in motor cortex. Using data collected in the macaque cortex

(Schwartz, 1994) the authors trained a self–organizing feature map to extract the directional

patterns encoded in the discharge rates of neurons. First, the average discharge rates � �

of � � 	� motor neurons were computed during the execution of �
 ms of in-out finger

movements. The inputs to the self–organizing map consisted of the discharge rate vectors

�� � ���� � ��� � ���� ��� � formed from all � individual cells contributions.

After training, the topology–preserving mapping property of the SOM led to the formation

of an output map that represents the similarity relationships between the inputs. Thus, dis-

charge rate vectors coding for similar directions were mapped in neighboring nodes, while

input vectors coding for opposite directions were classified according with their high de-

grees of dissimilarity. The findings of this study have partially inspired the way the training

set of our model on motor cortex self–organization was generated (see Section 6.1).

To conclude, previous work on trajectory coding by population vectors provided important

insights into the organization of network connectivity and on how directional information

can be read out from neurons discharge rates. What is still missing is a developmental model

of how directional selectivity and population coding emerge in the motor cortex.

37



Chapter 2: Control of movement direction

Representation of directional information in models of motor control

An important stream of models which deal with motor directional selectivity are robotics

studies implementing spatial to end–effector direction mapping strategies (Ritter et al., 1989;

Bullock et al., 1993; Fiala, 1995). This approach focuses on solving a transformation from

spatial trajectory to end–effector directions, as opposite to the mapping from spatial trajec-

tory to end–effector positions. There are several computational advantages to spatial–to–

direction mapping systems, such as continuity of trajectories and motor equivalence, ap-

propriateness for tool use and robustness when unexpected events occur in the environment

(Bullock et al., 1993).

The main application of direction mapping networks is for the visual control of arm–reaching.

In the DIRECT model (Bullock et al., 1993), spatial directional information in body–centered

coordinates is transformed into joint–rotations (i.e., directions) commands. For this purpose,

the signals on the current position of the arm and the directional information on the desired

trajectory are combined via a self–organizing position–direction map. Learning is conducted

so that, each cell in the map becomes sensitive to a particular spatial direction in a particular

position of joint space. It results that �
 k units are needed.

The sharp directional tuning of the neural response opposed to the broad tuning of real

cells is motivated as a compromise of the model biological plausibility in favor of system

performances. In accord with the experimental data is the fact that neural activity correlates

with the arm movement direction, but not arm movement end-point and also that activity

level may be primed prior to movement (i.e., preparation of movements).

Another group of researchers who have explored the use of directional information for the

control of visually guided movements is represented by Burnod and colleagues (Burnod et

al., 1992; Caminiti et al., 1992; Baraduc et al., 1999). Burnod et al. (1992) presented a model

which was largely inspired by neurophysiological data on the mechanisms of visuo–motor

transformation (see detailed description in Section 3.3.3). With respect to directional infor-

mation coding, the behavior of the network is in accordance with some of the experimental

results described in the motor cortex (Caminiti et al., 1992): (1) cells in the model are tuned

to a preferred direction depending upon the initial position of the arm; (2) the population

vector predicts the movement direction; and (3) the preferred direction of a single neuron

rotates with the arm within a specific subspace.

More recently, Baraduc et al. (1999) proposed a model of motor cortical command to inves-
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tigate the population coding of direction during reaching movements. The neural network

architecture consists of three populations of neurons (visual, proprioceptive and motor) with

directional and positional tuning properties that ensure a distributed coding of direction in

both spatial and motor coordinates (see Section 3.3.3). Based on their findings, the authors

suggest that the neural population vector resulted in motor area does not give a faithful

image of cortical processing during arm reaching. However, we point out that motor popu-

lation coding results as an effect of visuomotor mapping learning and occurs in a network

with fixed lateral synapses.

To conclude, there are currently a number of models of visuomotor control that implement

directional selectivity of motor cells. However, they are either based on sharply directionally

tuned neurons (Bullock et al., 1993) or address the motor control of directionality by using

supervised means and only within the process of visuomotor learning (Baraduc et al., 1999).

Our simulation work of motor cortex organization is aimed at developing directional se-

lectivity and population coding by using the spatio–temporal characteristics of information

processing in a pulsed self-organizing feature map (Section 6.1).
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Visuomotor development

Sensorimotor coordination has been an active research topic for both neuroscience and arti-

ficial intelligence over the last decade. The integration of sensory information for movement

guidance represents perhaps the most basic operation that a nervous (or artificial) system

must solve (Churchland and Sejnowski, 1992). Despite exploring the same problem, studies

carried out in these fields have arrived at different solutions. These differences arose mainly

due to the divergent research goals.

Robotic models, rather than revealing how nervous systems attain sensorimotor control,

demonstrate that many schemes are capable of implementing sensorimotor coordination

and focus on the accuracy of controlled behavior, often without considering the biological

plausibility of the resulting implementation (Kalaska, 1995). Nevertheless, their capabilities

are still behind the adaptive motor abilities of biological organisms. Conversely, significant

progress has been made in neuroscience towards understanding the biology of sensorimotor

transformation in terms of integrative mechanisms that function at the single cell level or in

small–networks of neurons (for a review see Kalaska et al., 1997; Snyder, 2000).

Several attempts were made recently to create an integrative framework that links neuro-

physiological and computational aspects of sensorimotor coordination. The aim is to pro-

vide a conceptual scheme that is readily implementable, to be used for the biological mod-

eling of visually guided movements (Bullock et al., 1995; Burnod et al., 1999). The purpose

of this chapter is to describe a general theoretical and modeling framework of sensorimo-

tor development, inspired by these recent neurophysiological findings and computational

theories.
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Section 1 introduces the main research themes on biological sensorimotor coordination.

First, a general description of the classical approach to solving the sensorimotor mapping

problem is presented. Following this, we present a number of alternate hypotheses that have

recently been proposed. Section 2 focuses upon the neurobiological mechanisms underpin-

ning visuomotor mapping for arm reaching. Neurophysiological evidence is presented for

the hypothesis of progressive match of visual to motor information, through intermediate

spatial representations and supported by multimodal combinatorial properties of neurons.

Finally, Section 3 reviews a number of biologically inspired models of visuomotor coordina-

tion development.

3.1 Sensorimotor coordination in biological systems

The general understanding of the sensorimotor coordination problem is that it represents

a mapping of signals from various sensory modalities onto an appropriate set of efferent

motor commands addressed to skeletal muscles or robotic actuators (Massone, 1995). A

number of different aspects contribute to the difficulty of this task. First, investigations of the

neural circuits involved in this process in the primate brain are faced with significant issues

of complexity. This is because, it is not obvious how the perceptual areas are connected with

the motor regions for sensory information transfer (Glickstein, 2000; Kandel et al., 2000).

Second, in order to guide motor actions, the visual signals undergo a translation into motor

outputs, which is commonly described as a non–linear coordinate systems transformation.

Solving this mapping is again a non–trivial problem (Pellionisz and Llinas, 1980; Hildreth

and Hollerbach, 1985; Jordan, 1996).

As a result, significant efforts in the last few decades have been devoted on one hand, to

identifying the connections between sensory and motor areas in the brain (Tanne et al.,

1995; Glickstein, 2000) and on the other hand, to developing various conceptual and mod-

eling schemes that can solve the coordinate system transformation problem (see Kalaska et

al., 1997; Snyder, 2000). These research directions are briefly discussed in the first part of

this section, referred to, as the classical paradigm. Following this, we introduce three new

theories, which refine the way researchers look at the visuomotor mapping problem.
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3.1.1 The classical approach

Coordinate system transformation and the inverse kinematics problem

The concepts of reference frames and coordinate systems are used widely in the study of eye

and limb movements. A reference frame is invoked when an experimental result is described:

for example, describing the position of eyes relative to the head (a head-fixed frame of ref-

erence) (Soechting and Flanders, 1995). A coordinate system represents the set of axes fixed

to the frame of reference, used to make the measurement (i.e., Cartesian coordinates). There

are three main types of coordinate systems: end-point coordinates (e.g., retinal or Cartesian),

generalized coordinates, that are independent variables describing the dynamics of a system

(e.g., joint angles), and actuator coordinates dependent on how motor control is implemented

(e.g., muscle forces) (Mussa-Ivaldi, 1995). For each coordinate system there are several pos-

sible reference frames: eye–centered, head–centered, limb–centered (Andersen et al., 2000).

The problem of visuomotor coordination was first described as a coordinate system transfor-

mation by Pellionisz and Llinas (1980). Given the fact that sensory input and the motor out-

put vectors are represented in different coordinate systems, the transformation of sensory

signals to motor commands can be described as matrix multiplication. And this represents

the standard technique for solving the geometrical problem of going from one coordinate

system to another (Pellionisz and Llinas, 1980).

The transformation of one class of coordinates to another is a nonlinear mapping. The trans-

lation from Cartesian coordinates to the joint angles required to move the arm to the target

is referred as the inverse kinematics problem. The mapping from desired joint angles to mus-

cle activities represents the inverse dynamics problem. The opposite process, which computes

first the motor commands and translates them into hand movements, is referred as the for-

ward kinematics. A biological/artificial system that has to perform the transformation from

extrinsic to intrinsic coordinates must learn the spatial transformations (i.e., the inverse kine-

matics) and the muscles dynamics (i.e., inverse dynamics) (Ghez et al., 2000).

A common approach to sensorimotor learning in artificial systems is to learn first an inverse

model, namely the transformation from desired movements to motor commands, which

will further be used to control the end–effector (Massone, 1995; Jordan, 1996). There are

various methods by which such an inverse model can be learned, mainly based on error

correction mechanisms, which translate errors expressed in the Cartesian (visual) coordinate
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system into the motor command or other coordinate system errors (for a review see Jordan,

1996; see also Section 3.3.2).

Nevertheless, it is an open question whether biological processes for inverse kinematics

or inverse dynamics exist, or whether the nervous system effectively computes the spatial

error between hand and target (Hildreth and Hollerbach, 1985). Despite the aptness of the

coordinate system transformation concept as a description of neurophysiological processes,

the question has been raised whether or not it has a biological relevance (Robinson, 1992;

Kalaska, 1995; Burnod et al., 1999). Robinson (1992) argues that coordinate systems are

a human invention for measuring spatial relationships and they are irrelevant for neural

networks performing visuomotor transformations:

Mathematical descriptions of what a system is trying to do are of little help to the
neurophysiologist trying to understand how real neurons do it (Robinson, 1992,
page 48).

Recently, a number of researchers acknowledged that even though neurophysiological data

suggests that the brain does not literally implement this formalism, the metaphor of coordi-

nate transformation does have heuristic value (Kalaska, 1995; Soechting and Flanders, 1995;

Kalaska et al., 1997).

The connectivity problem

From the neurophysiological perspective, the sensory–to–motor transformation represents

(partially) a problem of identifying the anatomical ways which connect the visual and motor

areas. Since the primary sensory and motor cortical areas had been identified by 1900, most

researchers have assumed that a series of cortico–cortical fibers must exist to link the per-

ceptive and motor cortex for the sensory guidance of movement (see Glickstein, 2000). As

Kandel and colleagues puts it, there exists a separation between motor and sensory systems

and integration needs to be done:

Purposeful action is possible only because the parts of the brain that control
movement have access to the ongoing stream of sensory information in the brain.
The integrative action of the nervous system depends therefore on the interac-
tion between motor and sensory systems (Kandel et al., 2000, page 651).

The way visuomotor coupling is attained is particularly difficult to observe in the primates

brain, due to the complexity of inter–neural circuits that stand between the sensory and

motor neurons:
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Figure 3.1: Cortical neural circuits allowing visual inputs from VI to be transformed into
motor output in MI (adapted after Rossetti et al., 2000). The dorsal stream is represented in
green, the ventral ’what’ stream is shown in red and their possible interactions are drawn
in blue. Legend: AIP: anterior parietal area; BS: brainstem; Cing: cingulate motor areas; d: dorsal;
FEF: frontal eye field; Hipp: Hippocampus; LIP: lateral intraparietal area; M1: primary motor cortex;
MIP: medial intraparietal area; MST: medial superior temporal area; MT: medio-temporal area; PM:
premotor cortex ; SC: superior colliculus; SEF: supplementary eye field; SMA: supplementary motor
area; STS: superior temporal sulcus; TE: temporal area; TEO: temporal-occipital area; v: ventral; V1:
primary visual cortex; VIP: ventral parietal area.

...between the sensory receptors detecting signals and the motor neurons inner-
vating the muscles are interneurons. Most of the answer to the problem of sen-
sorimotor control resides in how these interneurons connect up to form circuits,
and how these circuits are hooked up to produce behavior suited to the perceived
situation (Churchland and Sejnowski, 1992, page 331).

Today, there is clear evidence that multiple-synaptic cortico-cortical pathways connect the

primary visual and motor areas by way of the dorsal stream (Goodale and Milner, 1992; Tanne

et al., 1995). Subcortical routes may also be involved in the visuomotor transformation pro-

cess. An example is the route from visual to motor systems through the pons and cerebellum

(Glickstein, 2000).

The dorsal pathway projecting from the primary visual cortex (V1) through the dorsal ex-

trastriate visual area V3 and middle temporal area (V5/MT) to the superior temporal and

parietal cortex is concerned with the perception of movement and spatial information (see
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the green stream in Figure 3.1). Within the dorsal stream there are several pathways that are

responsible with the regulation of reaching movements, grasping of the objects, or move-

ments of the eyes as they follow a moving object (Andersen et al., 2000).

The connectivity problem is illustrated in Figure 3.1, which points at the complexity of the

dorsal stream cortical circuits involved in the transformation of visual inputs into motor

output (figure adapted from Rossetti et al., 2000). The dorsal stream (in green) is pictured

along with the ventral ’what’ stream (in red) and the substrate of their interactions is also

shown. Within the dissociation paradigm, the study of Rossetti and colleagues explores the

possible support for interaction between the vision and action systems.

To conclude, the biological theories outlined above helped to create a paradigm of a neatly

partitioned brain into areas for perception and action. This in turn, influenced the way

sensorimotor mapping problem was defined and addressed (i.e., as a transformation prob-

lem). It is believed in this thesis that the description of biological visuomotor development

in terms of the inverse kinematics problem and coordinate system transformation cannot

be taken literally, but rather as a metaphor of how the motor system processes information

(Kalaska, 1995). It is also believed that understanding of how basic visuomotor coupling

is implemented in the brain does not necessarily involve finding the connecting pathways

from the primary visual cortex to the primary motor cortex.

The progress achieved in understanding the various functions of the neural populations

placed along the dorsal stream and involved in movement control has changed the way re-

searchers think about the sensory to motor transformation (Caminiti et al., 1996; Burnod et

al., 1999). For instance, while reviewing neural information processing in those brain areas

involved in the generation of sensory guided movements, researchers observed that there is

not such a distinct line between sensory and motor processing in the brain (Goodale, 2000;

Rossetti et al., 2000). In the remainder of this chapter, we focus upon the biological and com-

putational hypotheses brought forward by some new ideas about visuomotor coordination

development.

3.1.2 New theories of visuomotor coupling

This section presents new approaches of visuomotor mapping problem from three perspec-

tives: neurobiological, computational, and evolutionary. The first of these frameworks is

build upon neurophysiological data from studies of visually guided arm–movements in
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monkeys. This research strand provided new insights into the organization of the corti-

cal areas underlying reaching. Firstly, the cortical control of reaching is distributed along

several areas in the parietal and frontal cortex (Johnson, 1992; Colby and Duhamel, 1996).

Secondly, recruitment of neural populations from these areas for computation of motor com-

mands involves both serial and parallel mechanisms (Caminiti et al., 1996; MacKay, 1996).

Thirdly, the parieto–frontal network has a gradient architecture which favors the link of sen-

sory and motor signals into a common hybrid reference frame (Johnson et al., 1996; Caminiti

et al., 1998). Fourthly, the common frame is the eye–centered representation used in both

ongoing and intended arm and eye movements (Andersen et al., 1997). Fifthly, neural cells

from the parietal and frontal areas possess combinatorial properties by which they integrate

information coming from various sources (Wise et al., 1997; Caminiti et al., 1998).

These findings have led to the reconsideration of the nature of visuo–to–motor transforma-

tion:

� The computational demand for reaching is met by operations that align distributed

sensory and motor representations through unsupervised means. The nonlinear map-

ping is performed gradually, sustained by the combinatorial properties of individual

neurons and the gradient architecture of the parieto–frontal network (see Section 3.2).

Another evolving research stream focuses on the use of computational modeling in an at-

tempt to understand the mechanisms of adaptive behavior in autonomous agents (Arbib,

1987; Cliff, 1990). Research carried out on understanding simpler animals behavior indi-

cated that all sensorimotor systems interact with their immediate surroundings by forming

a closed loop with the environment (Cliff, 1995). It was suggested that:

� Sensorimotor pathways generating adaptive behavior might not be so precisely clus-

tered into representation–transforming modules. Hence, one might try to model and

understand entire sensorimotor pathways that are complete sequences of neural pro-

cessing from the sensory input to the motor behavior (presented in Section 3.1.2).

Finally, whilst studying the interplay between eye and hand movement during reaching

or manipulation of objects, researchers have realized that an essential collaboration may

exist between oculomotor and limb motor control systems (Engel et al., 2000; Soechting et

al., 2001). These behavioral and electrophysiological findings on eye–hand coordination

suggested the hypothesis:
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� Hand and eye movements are subject to similar control mechanisms and gaze pro-

vides the signal for targeted limb motion (presented in Section 3.1.2).

In a summary, the developing ideas outlined above promise to advance our knowledge

of the biological and computational mechanisms of visuomotor transformation. They are

rapidly maturing and we may soon witness the emergence of a new paradigm in biological

visually guided motor control. The work presented in this thesis was partially motivated

by the attempt to bring modeling support to these somewhat radical proposals. In the fol-

lowing, the latter two theories will be briefly described in subsections below, leaving the

neurobiological mechanisms to be described in a dedicated section (Section 3.2).

The unitary nature of the sensorimotor cycle

One might assume, that being ”probably the most basic operation a nervous system evolved

to solve” (Churchland and Sejnowski, 1992) the sensorimotor coupling is implemented by

some basic, primitive mechanisms on which sophisticated structures, like a primates brain,

have built sensory guidance of movement (Goodale, 1996; see also the modeling of the entire

sensorimotor pathways in computational neuroethology, Cliff, 1995).

The concept of a unitary sensorimotor cycle as a motor primitive for the generation of adap-

tive behavior in animals (and humans) is not recent. For a long time in biology, the reflex arc

was assumed to play a central role in the production of complex sequences of movements,

which were understood to be formed by the combination of simple reflexes (Kandel et al.,

2000). More recently, computational neuroscience scholars in the search of primitives for

sensorimotor development have studied and emphasized the importance of primitive and

postural reflexes for infant development of motor control (Kuniyoshi and Berthouze, 1998;

Metta et al., 1999). Metta and colleagues (1999) studied the issue of sensorimotor develop-

ment within an artificial system and suggested that simple initial behaviors, such as motor

reflexes and sensory-triggered motions, can be seen as computational building blocks. That is,

they can guide the learning of more sophisticate behaviors and act as a bootstrap procedure

for the whole system (see Section 3.3.1).

Further evidence for the unitary nature of sensorimotor pathways came from experimen-

tal and modeling studies of visually guided behaviors in less intelligent animals (such as

amphibians and arthropods) (Arbib, 1987; Liaw and Arbib, 1993) and flies (Franceschini et

al., 1992). In simpler nervous systems it is more evident that perceptive capabilities of an
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organism have evolved in close relation with the achievement of specific motor goals. As

Goodale puts it:

Vision did not evolve to enable organisms to perceive. It evolved to provide
distal control of their movements (Goodale 2000, page 365).

Neurophysiological data from simple vertebrate systems shows that different classes of vi-

suomotor behavior rely on independent neural circuits specialized for generating an adap-

tive behavior to a certain sensory stimulus. For instance, in amphibians different circuits are

involved for visually guided prey–catching and visually guided obstacle avoidance. Simi-

larly, in rodents different subcortical pathways exist for control of orientation to food and

novel stimuli and for the avoidance of obstacles during locomotion (Goodale, 1996). These

observations suggest once more, that in a simple vertebrate’s nervous system, vision and

action are not so clearly partitioned in representation–action modules.

However, the complexity of mammals’ lives has demanded more flexible organization of

the circuitry, than that observed in simple vertebrates. According to Goodale (1996), this has

been achieved by the development in the mammals’ brain of a special system for perception,

and particularly by the sophistication of the dorsal stream responsible for the perception–

action loop. The ancient subcortical visumotor circuits that are shared by the monkey’s

brain with simpler vertebrates have become modulated by the more recently evolved layer

of cortical control. This layer has evolved to make more adaptive motor behavior possible.

The role of the inter–neural circuits in diversifying the motor behavior and allowing more

complex response patterns has been explored also by modeling studies of the visuomotor

pathways in the lamprey (Churchland and Sejnowski, 1992).

The classical view, as outlined in Section 3.1.1, defines the visuomotor mapping problem as

the task of finding the path between the sensory and motor systems which implements the

coordinate system transformation. The lesson from neuroethology is that perception–for–

action is a crucial adaptive operation, which is implemented in less sophisticated nervous

systems as unitary sensorimotor pathways (circuits). In this thesis, we consider an incre-

mental approach to system construction. From this view, we believe that the development

of new specialized modules or the increased sophistication of existing circuits preserves the

unity of the perception–action cycle as a built–in, inherited mechanism.
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Common computational programs for eye–hand movements

Within the visuo–motor mapping problem, special attention has always been given to eye–

hand coordination. That is, because of its fundamental relevance to the organization of hu-

man motor skills and to the understanding of the perception–action relationship (Caminiti

et al., 1992). Within this field, much consideration has been given to the possible interactions

between the systems controlling the eye and arm. For a long time, the common assumption

was that eye and arm movements may have little in common due to the fact that the eye is

comparatively simple and predictable mechanical object, in contrast with the complexity of

the arm system (Hildreth and Hollerbach, 1985). The traditional view of eye–hand coordi-

nation was that the central nervous system uses visual information (retinal or gaze angles)

to build up representations of the environment and to guide limb movement (Kandel et al.,

2000).

Recently, it was shown that for eye–hand coordination during manipulatory tasks, the gaze

is well ahead of the hand and the object. This suggests that gaze supports hand movement

planning (Johansson et al., 2001). Furthermore, Engel et al. (2000) demonstrated a similarity

in the response of eye and manual tracking to a change in the direction of target motion.

As a result, they proposed that hand and eye movements are subject to common control

mechanisms and that gaze (i.e., extraretinal information) provides the signal for targeted

limb motion. This hypothesis is also supported by neurophysiological studies which reveal

that arm movements are coded and updated in eye-centered coordinates (Andersen et al.,

2000; Snyder, 2000; see also Section 3.2).

These findings gave rise to a computational hypothesis about the way gaze signal might

be ’re-used’ for arm movement control (Scassellati, 1998; Reilly and Marian, 2002). It is

known that, in certain species, the auditory or visual signals produce an alignment of the

head to the source of the signal. As a result, the motor head map is used to generate an

appropriate motor behavior (Lazzaro et al., 1993; Kolesnik and Streich, 2002). Inspired by

this idea, models of sensorimotor transformation have been built to simulate the sensory

guided behavior of amphibians or flies (Franceschini et al., 1992; Liaw and Arbib, 1993).

The new hypothesis is that such a process might also operate in the case of motor control

in primates, and to generate the neural program for arm movement the system might make

use of the eye motor program (Metta et al., 1999; Reilly and Marian, 2002). The significance

of this thesis resides in its capacity to support and eventually implement the development
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of visually–guided reaching on the priori achieved foundation of motor programs for eye–

movements (see discussion in Section 7.1.4).

3.2 Neurobiological bases of visuomotor coordination

In Section 3.1.2 we made the case that sensorimotor coupling is a fundamental operation that

a neural system has to implement. While the unitary nature of the perception–action cycle

is a ubiquitous feature of simple nervous systems, the sophistication of cortical circuitry in

the primate’s brain poses the problem of where and how perception and action are inte-

grated. In this thesis, we address the issue of direct sensory control of action, defined as the

immediate motor response evoked by the visual activity that codes the task parameters. We

will try to argue that despite the sophistication of the circuitry, this process relies on a series

of basic computational mechanisms. In this section, the most recent experimental data on

the neurobiology of reaching movements is reviewed in search of the basic computational

building–blocks of perception–action coupling.

Experimental results on arm control indicate that no cortical area is uniquely responsible for

reaching (Andersen et al., 1997; Kalaska et al., 1997). The distributed representation of sen-

sory and motor information and the co–existence of several levels of representation suggest

that multiple cortical and subcortical sites simultaneously interact to produce an effective

reaching to visual targets (Kalaska et al., 1992; MacKay, 1995; Caminiti et al., 1998). This

cooperative interaction favors the idea of a more parallel organization of visuomotor trans-

formation. This contrasts with the classical view of a sequential cascade of anatomically

segregated neural populations, each generating a serial representation to be integrated in

the next stage (see Figure 3.1, Kalaska et al., 1992).

Based on the fact that visually derived information is available in motor areas (Johnson

et al., 1999) and signals coding the intention of movement have been observed in visual

areas (Andersen et al., 1997), the visuomotor mapping can be realized by the simultaneous

(as opposed to serial) engagement of neural populations distributed along the frontal and

parietal lobes. These cell populations combine in a nonlinear way information coming from

different input sources and are able to provide an output in a different coordinate system

(Salinas and Abbott, 1995). In other words, visuo–to–motor mapping can be realized at

multiple stages, in a widely distributed manner, and based on the activity of integrative

mechanisms that function at the level of single cell or small–networks of neurons. In the
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following, we shall see how these mechanisms are implemented in the brain for the control

of arm–reaching movements.

3.2.1 Gradient architecture of parieto–frontal network

Visually guided reaching can be achieved through a combination of different sources of in-

formation, relating to target location, gaze direction, arm position and movement direction.

Signals about the location of the target on the retina, and the position and movement of the

eye and the arm appear to be distributed and co–exist in many reach–related areas from the

parietal and frontal cortices (Johnson, 1992). The parietal cortex is known to contribute to

the formation of multimodal spatial representations in different coordinate frames, while

frontal activity is related to processes involved in the selection and execution of motor ac-

tions (Kalaska et al., 1997; Flash and Sejnowski, 2001).

Recent physiological recordings in the superior parietal and the frontal lobes revealed a

gradient–like distribution of neural functional properties (Johnson et al., 1996; Marconi et

al., 2001). These findings describe a gradual rostro–caudal change of response properties

across the premotor and primary motor cortex. This change ranges within the frontal lobe

from higher–order visuospatial processes (more rostrally) to lower–order actuator–specific

signals (more caudally) (Johnson et al., 1996; Shen and Alexander, 1997). The visual–to–

somatic gradient in the frontal lobe is represented in the left part of the brain in Figure 3.2.

Johnson and co–workers (1996) found a symmetrical gradient for the superior parietal cor-

tex: arm–movement and posture related activity tended to occur more rostrally, whilst

signal–related activity was found more caudally in the medial intermediate parietal area

(MIP) (see representation of right part of the brain in Figure 3.2). Moreover, cell popula-

tions with similar response properties in the parietal and frontal areas are interconnected

by cortico–cortical projections. These links are perhaps necessary for the match of retinal-,

eye- and hand-related information during visually guided reaching (Caminiti et al., 1998;

Marconi et al., 2001).

Based on these findings, Burnod and colleagues (1999) proposed that cortical control of

reaching is distributed over a ’network of networks’ in the parieto–frontal lobes. These

networks form a visual–to–somatic gradient presented in Figure 3.2 and schematized as fol-

lows: (1) target location in retinal and eye coordinates is signaled by neurons at the caudal

and intermediate levels of superior parietal cortex and in the rostral part of the frontal lobe
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Figure 3.2: Parieto–frontal architecture with a visual–to–somatic gradient for visually
guided reaching (adapted after Burnod et al., 1999). During reaching, the visuomotor trans-
formation requires the combination of retinal (dark blue), gaze (light blue), arm/hand (green)
and muscle (yellow) signals to move the hand from position B to the target in A (foveated) or
in C (non-foveated). In right, cortical areas involved are represented. The authors grouped
these areas approximately, in three parietal regions: anterior aP, intermediate iP, posterior
pP and three frontal motor regions: anterior aM, intermediate iM, and posterior pM which
are all reciprocally connected.

(see the dark blue lines and areas in figure); (2) eye–movement–related neurons (i.e., signal

gaze direction) are distributed less caudally in the superior parietal cortex and less rostrally

in the frontal lobe (indicated with light blue in figure); (3) neurons tuned to arm position

extend more rostrally in the parietal lobe and more caudally in the frontal lobe (in green in

figure); (4) arm movement-related activity predominate in the rostral bank of the central sul-

cus (in yellow in figure). At the border of these regions, where activities related to different

signals overlap, combinatorial domains result with a role on integrating information from

different sources (see Section 3.2.3).

3.2.2 Gain field mechanisms for coordinate transformation

The parieto–frontal network described above supports a gradual mapping of visual to so-

matic information through the involvement of neural populations coding different types of

signals. In order to correctly guide motor action, the sensory signals coding retinal position

and gaze direction must be combined, as noted in Section 3.1.1 by an operation similar to a
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coordinate system transformation.

The most accepted perspective on of how this nonlinear mapping is implemented in the

brain is that it is realized in a distributed manner, with multiple coordinate systems and

reference frames forming the parietal cortex for spatial representation. Mapping of visual

signals to motor output is realized by the smooth transition of information from one refer-

ence frame (or combinatorial domain) to another (Salinas and Abbott, 1995; Andersen et al.,

1997; Caminiti et al., 1998; Snyder, 2000).

Andersen and collaborators (1997, 2000) have provided important insights on how neu-

ral circuits may implement nonlinear functions similar to coordinate transformation. They

have suggested that the transformation from retina–centered coordinates to head– or body–

centered coordinates can be understood in terms of gain fields associated with neurons in

area 7a of the posterior parietal cortex. Cells in this area receive a convergence of eye po-

sition signals and visual signals and the response of a neuron is a product of the receptive

field and the linear gain field. This multiplication implements a nonlinear function that can

be described as a coordinate system transformation.

The gain field mechanism represents space in a distributed format, allowing inputs from

multiple sensory systems with different spatial frames and outputting signals for action

in several motor coordinate frames. Several neural network models based on gain field

mechanisms have been proposed for the conversion of eye and retinal position into head–

centered coordinates (Zipser and Andersen, 1988; Salinas and Abbott, 1995), or retina (eye–

centered) and auditory (head–centered) signals into motor error coordinates (Andersen et

al., 1997).

The solution to the nonlinear mapping problem illustrated above, focuses on the formation

of distributed representations in multiple coordinate frames, by using gain field modulation.

Another modality to combine signals for arm reaching, for instance the target location and

the limb starting position is to converge them onto single cells. These then have to perform

a match of the stimulus attributes (target location) with attributes of the appropriate motor

response (joint angles to reach the target) (Kalaska et al., 1997). This approach is based on

neural combinatorial properties and it is presented in the section below.
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3.2.3 Combinatorial properties of neurons

The combinatorial properties of neurons have been observed in many areas of the parietal

and frontal lobes (for a review see Wise et al., 1997; Caminiti et al., 1998). For instance,

discharge rates of neurons in premotor areas and in the 7m parietal area co-vary with the

direction of both eye and arm movement (Kalaska et al., 1997). Parietal cells in V6a (dorso-

medial part of the parieto–occipital area) exhibit complex interactions between visual inputs

and motor functions (Battaglia-Mayer et al., 2000). Moreover, about �
� of neurons in the

premotor ventral area are modulated by the direction of gaze (Mushiake et al., 1997).

Based on these findings, Burnod and coworkers (1999) attempted to explain the biology

underpinning sensorimotor transformation in terms of combinatorial domains and matching

units. The authors proposed that the gradient architecture of the parieto–frontal network

(see Section 3.2) favors the functional overlap of the regions coding for different reach–

related signals (i.e., retinal, gaze, arm position, and muscle output). Signals from different

sources along the visual–to–somatic axis can be matched within three combinatorial do-

mains (see Figure 3.2):

� The anterior parietal aP and posterior frontal pM domain combines information on

muscle dynamics with positional and directional arm information (c-domain� combines

yellow and green signals in Figure 3.2).

� The intermediate parietal iP and frontal motor area iM domain relates information

on movement direction with gaze positional and directional signals (c-domain� combines

green and light blue signals),

� The posterior parietal pP and anterior frontal motor pM domain relates positional and

directional information of gaze and arm with visual inputs on the retina (c-domain� com-

bines light and dark blue signals).

Within each domain, information can be combined along two other axes: the position–

direction axis and the sensory–motor axis. It is well known that directional information is

encoded in the activity of neurons in all reach–related areas from the parietal and frontal

lobes (Georgopoulos et al., 1993; see Section 2.1.3). Hence, on the position–direction axis,

processing units are tuned to both position and direction. That is, they respond maximally

to movement in a certain direction and at a certain position in space.
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Finally, neurons sharing the same combinatorial domain and similar position and direc-

tional tuning properties may have different temporal relationships to the signals relevant to

reaching. This results in the existence of four types of units on the sensory–motor axis: sen-

sory units that are timed–locked to sensory signals in all domains; motor units, time–locked

to motor events; matching units, which learn correlation between sensory and motor signals;

and condition units, which store correlation between sensorimotor signals and reinforcement

contingencies.

The progressive match framework for visuomotor mapping

In our view, one of the best-articulated proposals of unsupervised visuomotor learning for

arm-reaching was described in Burnod and co–workers (1999). This model exploits the gra-

dient nature of the parieto–frontal architecture together with the combinatorial properties

of neurons. In particular, it proposes that sensorimotor mapping is accomplished in a pro-

gressive manner, by the gradual involvement of sets of matching units belonging to differ-

ent combinatorial domains. Synaptic learning results from the increase of the connection

strength between two units, due to their repeated co–activation (e.g., Hebbian learning).

Below, we describe what in their view, are the first four stages required for the alignment

of hand direction (in motor coordinates) toward the target position (in visual coordinates).

Each stage corresponds to learning in different sets of matching units (for the description of

the complete scenario see Burnod et al., 1999):

� Motor babbling. When the monkey moves the hand, co–activations in the first combi-

natorial domain (c-domain �, see Section 3.2.3 above) due to inputs from motor com-

mands and re–afferent somato-motor signals result in reinforced connections. After

learning, these will allow the matching units to generate adequate muscles commands

in order to produce an expected sensory effect.

� Control of gaze and attention. When the gaze shifts toward a stimulus, co–activations in

the second combinatorial domain (c-domain �) due to gaze movement and retinal in-

put reinforce connections between neurons coding these signals. This learning enables

the matching units to shift gaze to any focus of attention.

� Hand tracking. When the eyes look at the moving hand, co–activations in the third

combinatorial domain (c-domain �), due to inputs signaling gaze movement and hand
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movement, result in reinforced connections that relate equivalent hand and gaze path-

ways. This set of matching units learns to perform visual tracking of hand movement.

� Reaching to foveated targets. When the hand moves toward the foveated target, co–

activation of previously reinforced hand–gaze and gaze–retinal connections leads to

learning in the connections of matching units. After training, these units will be able

to serve reaching to foveated targets, even if the hand is not in the field of view.

Note that within the parieto–frontal network, gaze and arm directional and position signals

play a unifying role. First, a subset of processing units is pre–selected based on gaze and

arm position and these units then learn stable relationships between visually derived signals

and somatomotor signals.

In summary, recent work on the coding of reaching movements in the brain has significantly

advanced the knowledge of sensorimotor transformation on several fronts. Experimental

evidence points to the fact that cortical control of reaching is distributed along a parieto–

frontal network and it involves serial and parallel recruitment of neural populations dis-

tributed along a visual–to–somatic gradient. Coding of both arm and eye movements in

an eye—centered reference frame, may represent the ’missing link’ in understanding this

visuomotor mapping.

Burnod and co–workers (1999) integrative framework was described in more detail, with

the belief that it currently represents the most coherent proposal of how computational pro-

cesses involved in reaching can be specified at the biological level. Up to the present, the

simulation of a complete neural network to perform the neural operations of matching units

has not been solved yet. In this thesis, we bring computational evidence from simulations

with realistic spiking neural models for the learning mechanisms involved in the progressive

match framework. In the remainder of this chapter, we focus upon discussing biologically

inspired neural network models of visuomotor coordination.

3.3 Biologically inspired models of visuomotor mapping

At present, after several decades of applied research, the adaptive capabilities of motion

control on biological organisms are still vastly superior to the capabilities of robotic systems.

Evident sources of inspiration for the creation of more intelligent robots are the real nervous

systems. In the recent years, numerous neural network models have been developed to
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apply biologically inspired control mechanisms to various robot control tasks (Bullock et

al., 1995; Zeller et al., 1995). Accordingly, several recent proposals have been made for a

more physiologically inspired modeling of visuomotor coordination development (Burnod

et al., 1992; Salinas and Abbott, 1995). Efforts on this direction have been aimed at the

construction of neural architectures that are completely founded upon anatomical evidence.

This means, to use neural elements that correspond as closely as possible to known neural

cell types and to apply biologically plausible learning (Bullock et al., 1995).

This research direction reflects a change in emphasis away from the more traditional ap-

proaches that model visuomotor development based on control theory formalisms (Mas-

sone, 1995; Jordan, 1996; Jordan and Wolpert, 2000). That is, it explores alternate learning

principles to the error-correction mechanisms (see Mohl, 1993). The attention is oriented

towards investigating the efficacy of the neocortex organizational principles, when they are

applied to arm-reaching tasks. These principles are of an unsupervised nature and are the

result of correlation–based associations (e.g., Hebbian learning).

At first, it was suggested that nonlinear sensorimotor transformations could be modeled as

sets of linearized representations, and so become a simple linear problem (Bullock et al.,

1993). Furthermore, Baraduc and Guigon (2002) demonstrated using rigorous mathematical

apparatus, that linear transformations can be learned by Hebbian associations, so long as the

training examples satisfy a regularity condition. For cases where the examples do not satisfy

the regularity condition (e.g., non–uniform distribution of preferred attributes of neurons in

a population) learning the transformation is possible only with a stochastic error–correcting

learning rule (see discussion in Section 3.3.2).

This section first reviews the main developmental paradigm for learning visuomotor coor-

dination. Then we briefly discuss the relation between self–organizing and error–correcting

mechanisms and finally, we focus upon our main interest that of physiologically inspired

models driven by means of unsupervised learning.

3.3.1 The developmental paradigm

A large number of models that learn inverse kinematics through experience use a circular

reaction learning protocol. The circular reaction concept was introduced by Piaget (1969) and

describes the following behavioral loop: as a child performs random, spontaneously gener-

ated movements of his arm, his eyes follow the arm’s motion, thereby enabling the learning
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of a transformation from a visual representation of arm position to a motor representation

of the same arm position. Inspired by this developmental process, researchers in robotics

have implemented a similar adaptive process for learning inverse kinematics. This process

is based on an autonomously controlled behavioral cycle with two components: production

and perception, and is referred to as motor babbling (Kuperstein, 1988; Ritter et al., 1992).

During a motor babbling stage, the control system endogenously generates random move-

ments, which displace the arm to different postures, bringing the end–effector into view.

For each configuration of the arm, the vision system locates the end–effector and correla-

tions between joint variables and eye variables are learned. After the correlations are stored

in connection weights, the visual input passes through the weight network to generate a

predicted arm activation vector. The difference between the predicted and externally gen-

erated activation vectors is used to modify the weights network and after many babbles the

model will learn to accurately reach to the foveated objects in the workspace (Kuperstein,

1988; Gaudiano and Grossberg, 1991).

In the last decade, it has been pointed out that an algorithm based exclusively on random

movement generation–and–observation for learning the inverse kinematics has a number

of drawbacks (Jordan, 1996; see Section 3.3.2 below). Despite this limitation, the action–

perception cycle remains the de facto behavioral framework for building developmental mod-

els of eye–hand coordination.

The circular reaction learning is not the only concept that computational researchers have

borrowed from developmental psychology in an attempt to create artificial systems capable

of adaptive, on–line control of goal directed reaching. Kuniyoshi and coworkers proposed

a developmental framework based on the concepts of assimilation and accommodation, im-

itation and entrainment dynamics (Kuniyoshi and Berthouze, 1998; Kuniyoshi et al., 1999;

see also Smith and Thelen, 1993). The implementation of these notions allows an artificial

system to bootstrap itself towards a higher complexity through embodied interaction dy-

namics with the environment. Acquisition of eye–hand coordination and cross–modality

mapping are attributed to the emergence of ordered structure from: interaction between

many sensory-motor processes, embodiment, and basic pre–existing behavior patterns (i.e.,

reflexes) (Berthouze and Kuniyoshi, 1998; Kuniyoshi and Berthouze, 1998).

The importance of a pre–existing repertoire of motor primitives such as primitive reflexes,

to support the development of coordinated movement has been also emphasized by Metta

and co–workers (1999). The authors proposed a developmentally plausible solution for the
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emergence of eye–hand coordination. Instead of computing the kinematics required by the

transformation of information in 3D visual coordinates to hand coordinates, they imple-

mented a direct mapping between the eye–head motor plant and the arm motor plant. In

this approach, the eye–head movement is controlled using force fields. Consequently, the

position of the target point in space can be coded using motor commands, namely the com-

mands that control the position of the head and that of the eye with respect to the head.

This allows the arm’s force–fields to be obtained through a motor–to–motor mapping, from

eye–head force fields. On the human infants, this mapping is assembled through experience

and it is possible thanks to the built–in motor reflexes and the sensory–triggered motions

that provide an effective means for linking vision and proprioception.

3.3.2 Self–organizing and error–based mechanisms for direction mapping

The direct inverse modeling approach outlined in the previous section has a number of

limitations and cannot properly control nonlinear redundant objects (Jordan, 1996). More

effective algorithms have been proposed, which solve the inverse kinematics problem in

two phases. During an initial learning by doing period, the forward kinematics from joint

angles to arm posture are learned. In a second stage, the inverse kinematics from desired

trajectory to joint–angle map are learned, by using error–correction mechanisms (Mel, 1991;

Jordan, 1996).

The error–correction algorithms represent the most common approach in modeling sensory

guided reaching. A more biologically plausible alternative is to use unsupervised learn-

ing based on Hebbian associations. It was pointed out that correlation–based association

mechanisms can assure the alignment of sensorimotor maps for the correct transfer of infor-

mation for reaching (Baraduc and Guigon, 2002). We illustrate here the application of these

learning rules to the direction–mapping problem.

Direction–mapping learning is an effective approach for translating spatial trajectory to

end–effector directions, which has received increased attention in recent years amongst re-

searchers working on modeling of sensorimotor coordination (Bullock et al., 1993; Fiala,

1995; see also Section 2.3.2). Perhaps the most illustrative example of learning direction

mapping for visually guided movements is the self–organizing DIRECT model proposed

by Bullock and colleagues (1993).

The central operation in the DIRECT system is the mapping of spatial directions in body–
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Figure 3.3: Processing stages of the self–organizing DIRECT model for control of movement
(adapted after Bullock et al., 1993). Learning of the spatial direction to joint rotation map-
ping occurs during an action–perception cycle triggered by the GO signal, and is based on
an improved Hebbian-like learning rule. See in text for details.

centered coordinates to joint directions in muscle–coordinates. This is accomplished in a

number of processing stages as illustrated in Figure 3.3. First, the current position of the end

effector is determined and the desired movement direction is computed as the difference

between the visual representation of the target position and the actual representation of

the end effector (first two stages in Figure 3.3). Second, the actual motor position signal is

combined with the spatial direction vector using a self–organizing network. Learning at

this stage results in the formation of a map where each cell is sensitive to a particular spatial

direction in a particular position of joint space (the position–direction map in Figure 3.3).

Learning of spatial–to–motor direction mapping takes place in the third stage of the model

(see the modifiable blue synapses in Figure 3.3). Here, translation of position–direction

information into joint-directions is learned during a motor babbling period, when the GO

signal generates random movements. The adaptation of the plastic synapses is based on a

variant of normalized Hebbian learning mechanism, known as the outstar rule (Grossberg,

1998). After learning, the model is capable of visual control of reaching with tools and

clamped joints, in the presence of visual input distortions or in the absence of visual signals
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(i.e., blind reaching).

Learning of the differential transformation between the motor and spatial directions can

also be implemented by using a gradient descent algorithm (Ritter et al., 1989). Fiala (1995)

proposed an error–correction based algorithm that combines the DIRECT and VITE models

(Bullock and Grossberg, 1989) in order to obtain bell–shaped velocity profiles of trajecto-

ries. In this architecture, the spatial directional vector is mapped to a motor direction vector

through an intervening field of cells, referred to as direction mapping cells. The difference in

activity between the spatial and motor direction vectors is computed and minimized with a

gradient descent algorithm. Feedback information from the motor output layer is also taken

into account during learning.

The model learns a kind of inverse Jacobian in a manner similar to that obtained by Ritter

et al. (1989) and succeeds in reproducing straight–line motions and unimodal, bell–shaped

velocity profiles. Based on the model’s good performance, Fiala (1995) has tried to motivate

the use of error–correction learning mechanisms with behavioral and biological evidence.

Thus, behavioral results on spiraling–in movements during reaching suggest that the visual

error between the hand and target is computed during movement (Roby-Brami and Burnod,

1995). However, these experimental findings also indicate that movement usually begins as

a straight line along the transformed direction and a spiraling movement is often observed

during the later part of the reaching. This observation suggests the existence of different

stages in movement control, which, accordingly, may rely on different mechanisms.

According to Doya (1999), Hebbian synaptic mechanisms characterize the self–organization

of the cerebral cortex, while error–correction learning is implemented in the cerebellum.

Given the separate localization of these adaptation mechanisms a plausible hypothesis is

that learning of movement control implies synaptic changes driven by different rules, in

both structures. At the cortical level, correlation–based associations may be involved in the

formation of stable connections for the alignment of visual and motor neural representa-

tions. This process allows the correct transfer of information to initiate the movement, by

specifying the directional information. The involvement of error–correction mechanisms

through the cerebellum may be necessary for the adjustment of the trajectory during the

later stages of movement, to obtain an adequate reaching of the target (see also Fiala, 1995;

Doya, 1999).

To conclude, there is currently a biologically motivated research direction in modeling of

arm movement control. Much attention within this direction is given to the use of self–
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organizing algorithms for learning of inverse kinematics. It has been argued that Hebbian

association mechanisms can learn linear transformations and they can implement synaptic

adaptation for development of visuomotor mapping. Furthermore, despite the limitations

of direct inverse modeling, there is a growing research stream which builds–upon the devel-

opmental approach of visuomotor acquisition. In this thesis, modeling work of visuomotor

mapping is based exclusively on unsupervised learning and it is placed within the develop-

mental paradigm.

3.3.3 Models inspired by physiological data

A significant part of this chapter has been devoted to the review of recent experimental

data on neurobiology of visuomotor transformation (Section 3.2). In comparison, the survey

of biologically inspired modeling of sensorimotor development is less extensive. This is

because, while much detail regarding the manner in which the brain solves the visuomotor

transformation has been accumulated, the implementation of these concepts within artificial

systems has only just begun. We believe that most importantly, the current progress towards

the understanding of arm reaching neurobiology has given rise to a conceptual framework

that explicates the neural basis of computation, allowing its readily implementation (see

Section 3.2.3 for instance).

The advantages of constructing artificial systems inspired by real living systems are clear

(Bullock et al., 1995; Cliff, 1995). Note that we are referring to an implementation fully

grounded on physiological data, with architecture, neural models and learning rules all

designed to be biologically plausible. We believe that an important step forward in this

endeavor has been represented by the proposal of Burnod and colleagues (1999) (see Sec-

tion 3.2.3). Even if the implementation of this model is not yet complete, it represents the

result of a series of precursor models, which explore the alignment of hand, gaze and visual

signal representations by unsupervised means. We review this previous work here.

Salinas and Abbott models

The biological modeling of the visuomotor transformation has been significantly advanced

by the studies of Salinas and Abbott (1995, 1996). Their work addresses two major prob-

lems. The first problem considers how to find the mechanisms that ensure the alignment
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of neural representations, in such a way that sensory activity representing target location

evokes an appropriate motor response toward the target (the alignment problem). The sec-

ond issue addresses the coordinate transformation problem. That is, if the target location in

body–coordinates is determined by a combination of retinal position and gaze direction,

then what set of weight connections assure that the correct combination is transferred to the

motor network?

Their solution to the alignment problem consists of an unsupervised mechanism that trans-

fers information between two networks composed of broadly selective neurons. Sensory

neurons can encode retinal position solely, or retinal and gaze direction information, while

motor neurons are assigned with preferred directions of movement. Both motor and sensory

neurons firing rates are characterized by maximal cosine tuning curves (see Section 2.1.3 on

direction coding).

The networks are coupled through modifiable synapses and learning occurs during the ob-

servation of the random movements generated by the motor network (e.g., motor babbling

phase). The training procedure is based on a general Hebbian learning mechanism that

modifies the synaptic weight ��� between a � sensory neuron and an � motor neuron accord-

ing with the correlation between their firing rates ��
� and �	

� :

��� �� �	
��

�
� � �� (3.1)

where � is an arbitrary constant set to optimize the performance of the system. This process

leads to an accurate alignment of the visual and motor representations, which ensures that

sensory activity coding the target position is correctly used to guide the movement gener-

ated in the motor map. The authors derive a condition for the network alignment to occur.

The condition is that the strength of the connection between a sensory neuron � and a mo-

tor neuron � depends on the magnitude of the difference between the neurons preferred

locations.

Furthermore, the authors address the problem of linear (and nonlinear) mapping of the tar-

get location in retinal coordinates into movement direction in head–centered coordinates.

It is shown that a sensory–motor network with synaptic weights that depends on the dif-

ference between the preferred direction of the motor neuron and the sum of the preferred

retinal position and gaze direction for the sensory neuron in a pair can provide a general

mechanism for linear coordinate transformation. The nonlinear coordinate transformation

problem was further implemented with computational mechanisms at the population level,
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which are shown to realize neural multiplication (Salinas and Abbott, 1996).

A more general computational framework, which deals in detail with the distributed rep-

resentation of linear transformations and discusses the limitations of Hebbian mechanisms

when compared to supervised means, in learning of nonlinear coordinate transformations

can be found in Baraduc and Guigon (2002).

Burnod and colleagues work

A significant contribution to the understanding of computational mechanisms involved in

the control of arm–reaching was brought by the work of Burnod and co–workers during the

last decade. In comparison with Salinas and Abbott mathematical model, those of Burnod

and colleagues are more tightly linked to the physiological and anatomical aspects of senso-

rimotor learning. Models developed by this research group incorporate somatic information

beside the visually derived signals, in order to compute the appropriate motor command for

reaching out to a visual target (Burnod et al., 1992; Baraduc et al., 1999).

A precursor to matching units’ concept and neurons combinatorial properties was first de-

scribed by Burnod et al. (1992). The primary goal of this study was to examine how the

central nervous system might learn to reach towards a target position from any initial arm

posture. The proposed architecture has three layers: (1) a map of matching units, which com-

bine visual directional input and somatic arm signals and project to the next layer of synergy

units; (2) a laterally connected map of synergy neurons which integrate the input from the

matching layer and periphery feedback and which projects to a third (3) layer of motor output

units that displace the hand in space. The appropriate combination of the visual informa-

tion about movement trajectory with the kinesthetic information concerning the orientation

of the arm in space is learned by the network from spontaneous movements.

Learning of the inverse kinematics from hand space to actuator space takes place in the

matching units layer, according to correlation–based adaptation rules applied to sensory

and motor co–activated events. The neural response in each layer is given by a combina-

tion of the inputs coming from the afferent source and the lateral signals from other units in

the layer. The computation learned by the units can be approximated by a bilinear opera-

tion. This is interpreted by the authors as a projection of the visual information on a motor

reference frame, that simultaneously rotates with the arm (Burnod et al., 1992). Once the

network is trained, the signal on the direction of intended hand movement is projected onto
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the matching units and activates the appropriate synergy units as a function of the starting

arm posture.

A simpler, but more readily implementable variant of the above model was proposed re-

cently by Baraduc et al. (1999). They consider a neural network model which combines

broadly tuned (muscular) proprioceptive and visually derived directional input to calculate

the angular motor commands for the initial part of the movement of a two–link arm. The

arm position is represented by a set of �
 proprioceptive neurons coding muscle length. Di-

rection of the desired movement is coded by a population of �
 visual neurons with cosine

tuning functions. Motor commands are specified by a population of �
 motor neurons with

optimal tuning property, which command motor synergies (direction in joint space). Com-

pared to Burnod et al. (1992) model, this architecture is simplified by considering only two

layers and learning only at one level. The advantage is that, in this case, the motor synergy

layer encodes information directly in joint coordinates.

Information concerning the position of the arm and the visual desired direction is com-

bined in two steps. First, an intermediate representation of arm position is formed in a

somatic layer, by the combination of feed–forward proprioceptive signals and lateral intra-

layer feedback. Second, activity in the somatic layer is combined with the visual directional

activity. Only weights between the proprioceptive input layer and the somatic map are sub-

ject of learning. Training is performed by motor babbling in � positions and takes place

according to a variant of the delta rule (i.e., supervised learning). After learning, the net-

work generates arm commands (in joint coordinates) which move in the same direction as

the visual input, over a large part of the visual inputs (16 directions of movements were

tested).

Compared to previous models this approach has several advantages. In contrast to the DI-

RECT model (Bullock et al., 1993), Baraduc and co–workers use broadly tuned motor neu-

rons for learning of visuomotor mapping of direction. Compared with Salinas and Abbott

approach, generation of movement is modeled with respect to the arm position (propriocep-

tive feedback). However, the somatic map organization produces a motor population vec-

tor, which largely deviates from the desired direction of movement. We believe this result

might be improved by separating the motor map organization from learning the direction

mapping task. A further discussion of these models can be found in the final chapter, along

with an evaluation of the results of our work.
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Spiking neural model

In the previous decade, the majority of artificial neural network models were based on a

computational paradigm involving the propagation of continuous variables from one unit

to another (Rumelhart and McClelland, 1996). However, in recent years experimental ev-

idence has been accumulating to suggest that biological neural networks, which commu-

nicate through spikes, use the timing of these spikes to encode and compute information

(Abeles, 1991; Thorpe et al., 1996; Rieke et al., 1997). Several alternative schemes to the

rate–coding hypothesis have been proposed, suggesting that information may be coded in

synchronization and oscillations of populations of neurons, or in the precise timing of the

neural pulses (Recce, 1999; Gerstner and Kistler, 2002).

A new generation of pulsed neural networks has emerged, which focuses upon the mathe-

matical formalization of the computational properties of biological neurons (Gerstner, 1995;

Maass, 1997; Stevens and Zador, 1998). The neural models created capture the spiking na-

ture of the neurons and retain the essentials of the behavior to be modeled, while trying to

simplify the description (Gerstner, 1999; Izhikevich, 2001). This chapter focuses upon the

description of a simplified spiking neural model and of the type of computations that it can

account for.

In order to understand how a biologically inspired neural model behaves it is necessary

to offer a brief introduction in the physiology of the real cell (Section 1). Neural activity

of biological cells may be described at several levels of abstraction. In Section 2, the main

tendencies in neural modeling, i.e., detailed vs. simplified, are reviewed, outlining the ad-

vantages and drawbacks of each direction. This description is followed by the presentation
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Figure 4.1: Schematic of a biological neuron. See in text for the description of the function-
ality of each component.

of a number of time-coding schemes and computation modes that are implemented in our

simulator. In Section 3 the neural model implemented in SpikeNNS is described (e.g., equa-

tions, parameters, input patterns). The last section offers a brief review of a number of

learning rules for spiking neurons.

4.1 Biological neuron physiology

The brain is a collection of about 10 billion interconnected neurons. Each neuron is a cell

that uses biochemical reactions to receive, process and transmit information. The neural

unit represents the basic information processing mechanism that is the foundation of human

cognition.

4.1.1 Neural components

A typical neuron can be divided into three functionally distinct parts, namely the dendrites,

the soma, and the axon (see Figure 4.1). A neuron receives connections from thousands other

neurons. Most of these contacts take place on the neuron dendritic tree, however they can

also exist on the soma or the axon of the neuron. The morphology of the dendritic tree

plays an important role in the integration of the synaptic inputs and it influences the way

the neuron processes information and computes (Mel, 1994). The strengths of the charges

received by a neuron on its dendrites are added together through a nonlinear process of

spatial and temporal summation (Koch, 1999). The resulting input flows to the soma and
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suffers voltage attenuation, so that about half of the total charge injected into the distal

dendritic site reaches the soma.

Two parameters play a critical role in the spatio–temporal integration of synaptic inputs:

the space constant � that gives the voltage attenuation with distance and the membrane time

constant ��, which describes how fast the voltage decays. The input transmission from a

dendritic site to the soma is characterized by a propagation delay. In the case of slowly varying

inputs this is dictated by the membrane time constant value, but for fast synaptic inputs

it outpaces ��, giving the possibility of submilisecond coincidence detection in dendrites

(Koch, 1999).

The primary function of the soma is to perform the continuous maintenance required to

keep the neuron functional (Kandel et al., 2000). The part of the soma that performs the

important non–linear processing of the input is the axon hillock. If the total input produces

a depolarization up to the neural threshold (i.e., of about ��� mV), the axon hillock fires an

action potential. The output signal is transmitted down the axon, which delivers it to other

neurons.

4.1.2 The action potential

The firing of a neuron, referred to as the action potential, is an all or none response. This

means that, incoming stimuli either produce action potentials, if they exceed the neuron’s

threshold value, or they do not. A spike or action potential is a stereotyped impulse of

fixed magnitude generated by the neuron. After the firing of an action potential, the neuron

enters a refractory period when no further action potentials can be generated. Even with very

strong input, it is impossible to excite a second spike during or immediately after a first one.

This causes that action potentials in a spike train are usually well separated. The minimal

distance between two spikes defines the absolute refractory period of the neuron. The absolute

refractory period is followed by a phase of relative refractoriness where it is difficult, but not

impossible, to generate an action potential (Kandel et al., 2000; Gerstner and Kistler, 2002).

4.1.3 Synapses

The site where the axon of a presynaptic neuron makes contact with the dendrite (or the

soma) of a postsynaptic cell is the synapse. The most common type of synapse in the ver-
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tebrate brain is a chemical synapse (Shepherd and Koch, 1990). When an action potential

arrives at a synapse, it triggers a complex set of biochemical processes that lead to a re-

lease of neurotransmitters from the presynaptic terminal into the synaptic gap. The voltage

response of the postsynaptic neuron to a presynaptic action potential is referred to as the

postsynaptic potential. A single synaptic input is rarely sufficient to determine the generation

of an action potential. This is usually triggered as a consequence of the nonlinear interaction

of several excitatory and inhibitory synaptic inputs (Mel, 1994; Poirazi et al., in press). At

the end of the synaptic action, the postsynaptic potential decays exponentially towards the

resting value with a rate of decay given by the time constant ��. The physical and neu-

rochemical characteristics of each synapse determine the strength and polarity of the new

input signal. Synapses are believed to be the locus of learning and memory in the brain

(Squire and Kandel, 1999). This is where the brain is the most flexible and the most vulner-

able.

4.2 Computational and modeling aspects

The idea that brains are computational in nature has captured the attention of many re-

searchers in the last decade (Churchland and Sejnowski, 1992; Maass, 1995; Koch, 1999;

O’Reilly and Munakata, 2000). In a strict sense, a physical system computes a particular

function if there is an appropriate mapping between the physical states of the systems and

the elements of the function and if the mapping of the input space into the output space per-

formed by the function can be described in terms of some rule (McCarthy, 1963; Churchland

and Sejnowksi, 1992). For instance, one can describe the stochastic behavior of a neuron that

maps an activation value � to a binary response that is a spike in ��� of the cases and no spike

in ��� cases with a probability distribution function: � � �� � �� � ����� � �
 ���� �� �

�
� ��� (after Touretzky, 2001).

The studies concerned with the way the brain represents and computes information based

on the activity of neural components and using as main methodology the computer simu-

lations, are unified under the computational neuroscience discipline (see the introduction

to the field in Section 1.1). This research stream differs from other approaches of neural

modeling in that it believes that understanding the way the brain computes is very closely

dependent on the knowledge of the anatomical and physiological details of neural elements

(Bower and Beeman, 1998). Hence, we can talk about a general tendency in computational
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neuroscience towards realistic simulation of the structure and physiology of the biological

neurons.

4.2.1 Levels of detail in neural modeling

Neural activity may be described at several levels of abstraction. We can distinguish be-

tween two major modeling directions in computational neuroscience, depending on how

much of the neuron details the modeler wants to take into account. That is, because the more

details are taken into account, the greater are the computational demands of the model.

Detailed neural models

One trend in computational neuroscience is oriented towards creating ever more detailed

and complex models (De Schutter and Bower, 1994 a,b; Bower and Beeman, 1998; Segev

and Burke, 1998; Steuber and De Schutter, in press). The detailed modeling of the neurons

aims to describe the chemical processes undergone at the subcellular level, including the

biophysics of ionic channels and dendritic trees, the synaptic interactions between excita-

tion and inhibition, the voltage-dependent events in the active dendrites (Destexhe et al.,

1998; Mainen and Sejnowski, 1998). In this effort, the neurobiologists argue that one has

to consider the anatomical and physiological details of the neurons if he/she pursues a full

understanding of the nervous system (Bower and Beeman, 1998).

The model proposed by Hodgkin and Huxley in 1952 offers perhaps the clearest instance of

a detailed model of the processes involved in action potential generation. The model pro-

vides a detailed description of the biophysics of ionic mechanisms underlying the initiation

and propagation of the neural spike. By doing this, it offers an accurate quantitative model

of the physiological data. However, complex frameworks like the Hudgkin-Huxley model,

which account for numerous ions channels and different types of synapses are difficult to

construct and to analyze. An important conceptual drawback of this family of models is

that their numerical complexity (e.g., solve a large number of nonlinear differential equa-

tions) can prevent one from understanding which features are responsible for a particular

phenomenon and which are irrelevant (Koch, 1998).

Hodgkin-Huxley-like models can be applied to point neurons, that is, neurons without any

spatial structure. However, the morphology and architecture of the dendritic tree plays an
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important role on the nonlinear functioning of the neurons (Mel, 1994; Vetter et al., 2001).

For the construction of detailed neuronal models that consider all of the cells complexities,

including the branched cable structure, the standard approach is to divide the neuron into

a finite number of isopotential connected compartments (Rall and Agmon-Snir, 1998; Segev

and Burke, 1998). Each compartment acts like a capacitance-resistance circuit, modeled by

a system of ordinary differential equations. It can represent somatic, dendritic or axonal

membrane and contain a variety of synaptic inputs (Segev and Burke, 1998).

Compartmental models are implemented by powerful, biologically realistic simulators, such as

Genesis (Bower and Beeman, 1998) and Neuron (Hines and Carnevale, 1998). Nevertheless,

there is an important computational cost in memory and speed that detailed simulations

based on compartmental models must pay. For instance, modeling of calcium dynamics

in a single Purkinje cell, using ���
 compartments and 	
�� ionic channels required 8 Sun

workstations running one hour for the simulation of ��
 ms of Purkinje cell activity (De

Schutter and Bower, 1994a, b).

A major argument in favor of detailed modeling is that the close replication of the nervous

system structure as a basis of exploring its functions increases the chances to discover its

unknown (or unsuspected) organizational principles (Bower, 1997). The drawbacks arrive

from the complexity of these models. That is, they are difficult to construct and analyze; they

scale poorly with the network size and activity; they represent a quantitative, rather than

a qualitative description of the neural behavior, which can prevent one from understand-

ing the crucial features of the system. Despite the recent efforts oriented for the creation

of simulation frameworks that allow modeling of large-scale networks of biologically real-

istic neurons (see Parallel GENESIS, Bower and Beeman, 1998; Goddard et al., 2001), the

detailed models are generally considered more suitable for the study of single neurons or

small networks behavior.

Formal spiking neuron models

The second stream of research in computational neuroscience is oriented towards model-

ing the spiking nature of the neurons and retaining the essential elements of the behavior

being modeled, while trying to simplify the complexity of the resulting description (Ger-

stner, 1991; Maass, 1995; Maass, 1997; Rieke et al., 1997). The principal motivation for the

creation of simplified models is that they allow studying more easily the computational and
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functional principles of neural systems (Koch, 1999).

The reduction of the detailed neuron models to formal models requires simplifications in

at least two respects. First, the non–linear dynamics of spike generation must be reduced

to a single ordinary differential equation and second, the spatial structure of the neuron

(i.e., the dendritic tree) is neglected and reduced to an input (Gerstner and Kistler, 2002). To

support the validity of the former simplification, Kistler et al. (1997) demonstrated that spike

generation in the Hodgkin–Huxley model can be reproduced to a high degree of accuracy

(i.e., up to �
�) by a single variable model. The authors pointed out that the Hodgkin–

Huxley model shows a sharp, threshold–like transition between an action potential for a

strong stimulus and graded response (no spike) for slightly weaker stimuli. This suggests

that the emission of an action potential can be described by a threshold process (see also

Section 4.3.1).

Several simplified neural models have been proposed in the last decades. The leaky integrate–

and–fire neuron is probably the best–known example of a formal neural model (Tuckwell,

1988; Bugmann, 1991; Stevens and Zador, 1998). It simulates the dynamics of the neuron

membrane potential in response to a synaptic current by implementing an equivalent elec-

trical circuit. The function of the integrate–and–fire circuit is to accumulate the input cur-

rents and, when the membrane potential reaches the threshold value, to generate a spike.

Immediately after emitting a pulse, the potential is reset and maintained there for an abso-

lute refractory period.

The simplified mathematical models for spiking neurons cannot account for the entire range

of computational functions of the biological neuron. Rather, they try to abstract a number of

essential computational aspects of the real cell function. The essential features implemented

can differ between models, as a function of what the modeler considers to be relevant and

crucial for its domain study. Thus, the integrate–and–fire model focuses upon the temporal

summation function of the neuron (Bugmann and Taylor, 1997). The spike response model pro-

posed by Gerstner (1999) simplifies the action potential generation to a threshold process.

The resonate–and–fire model (Izhikevich, 2001) focuses upon the operation of the neuron in a

resonating regime. By contrast with the detailed neural models, the computational strength

of the spiking neurons arises from the way they interact with each other, when they work

cooperatively in large networks.

In summary, this section presented a brief description of the main modeling directions in

computational neuroscience. The aim of this was to outline the advantages and drawbacks
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of each research stream. The review indicates that there is a trade–off problem that a re-

searcher has to solve, when choosing the appropriate level of detail for the task to be sim-

ulated. Another aspect, which differentiates the two approaches, concerns the time scale

at which they work. Detailed neural models are more appropriate to investigate neural

patterns of activity that emerge within a short–time scale (i.e., hundred of ms of seconds).

Conversely, networks of spiking neurons can be used to model learning in developmental

processes (see Koch, 1999).

As stated in the introduction to this thesis, the general aim of our work is to investigate how

cognitive phenomena such as visuomotor coordination, can emerge through development,

from the properties of basic elements when they interact and function cooperatively. Con-

sequently, our simulation work will be built using a simplified neural model, considered to

be best suited to our modeling purposes. In the remainder of this section, we describe what

types of computations with spiking neurons are accounted for in our model.

4.2.2 Neural communication with spikes

Neurons communicate by producing sequences of fixed size electrical impulses called action

potentials or spikes (Adrian, 1926). As Rieke and colleagues puts it:

Spike sequences are the language for which the brain is listening, the language
the brain uses for its internal musings, and the language it speaks as it talks to
the outside world (Rieke et al., 1997, page 1).

In the theory of neural information processing, there are two main hypotheses with respect

to where in the spike train the neural information is encoded: in the neural firing rate or in

the precise timing of the spikes. These hypotheses are introduced in turn, below.

Rate coding

Adrian (1926) introduced the concept of rate coding, by which the number of spikes in a

fixed time window following the onset of a static stimulus code for the intensity of the

stimulus. Since Adrian’s studies, the rate coding hypothesis has been dominant in the neural

computational field (see for a review Recce, 1999). The definition of the rate has been applied

to the discovery of the properties of many types of neurons in the sensory, motor, and central
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nervous system, by searching for those stimuli that make neurons fire maximally (Kandel et

al., 2000).

Recent observations on the behavior of cortical visual neurons demonstrated a temporal

precision in brain function that is higher than would be predicted from frequency coding

(Abeles et al., 1993; Thorpe et al., 1996; Abeles and Gat, 2001). This suggests that firing rate

alone cannot account for all of the encoding of information in spike trains. Consequently, in

the last decade, the focus of attention in experimental and computational neuroscience has

shifted towards the exploration of how the timing of single spikes is used by the nervous

system (Gerstner and Kistler, 2002; see Section 4.2.2).

It is important to understand that the pulse coding represents an extension of the way neu-

rons code information, rather than a replacement of the firing rate code. Panzeri and Schultz

(2001) proposed such a unified approach to the study of temporal, correlation and rate cod-

ing. They suggest that a spike count coding phase exists for narrow time windows (i.e.,

shorter than the timescale of the stimulus-induced response fluctuations), while for time

windows much longer than the stimulus characteristic timescale, there is additional timing

information, leading to a temporal coding phase.

Temporal coding by relative latencies

In a temporal code, information can be contained in the temporal pattern of spikes (inter–

spike interval codes) or in the time–of–arrival of the spike (relative spike timings) (Cari-

ani, 1997). In the following, we discuss the later coding scheme, which is implemented

in SpikeNNS.

Neurobiological studies of sensory coding of stimuli in the auditory and visual systems

revealed that latency of transmission is a potential candidate for coding the stimulus features

(Bugmann, 1991; Heil and Irvine, 1996; Heil, 1997). An example is the study by Gawne et

al. (1996) who showed that the latency of neurons response in the striate cortex is a function

of the stimulus contrast and that synchronization based on spike latencies can make an

important contribution to binding contrast related information. The coding scheme which

represents analog information through differences in the firing times of different neurons is

referred to as delay coding or latency coding (Hopfield, 1995; Gawne et al., 1996; Maass, 1997;

Thorpe and Gautrais, 1998).
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Figure 4.2: Coding by relative delay. The neurons in figure emit spikes at different moments
in time �

�
�
� . The most strongly activated neuron fires first (i.e., second from left). Its spike

travels a considerable distance along the axon, until last neuron fires (i.e., the fourth from
left). The latencies 
� are computed with respect to a reference time � (adapted after Thorpe
et al., 2001).

According to Hopfield (1995) and Maass (1997), a vector of real numbers �
�� ���� 
�� with


� � �
� �� can be encoded in the firing times �� of � neurons, such as �
�
�
� � � � 	 � 
� ,

where � is some reference time and 	 � 
� represent the transmission delays. The timing can

be defined relatively to some other spike produced by the same neuron or to the onset of a

stimulus. If for each neuron, we consider only the latency of the first spike after the stimulus

onset, then we obtain a coding scheme based on the time–to–first–spike.

According to Van Rullen and Thorpe (2001) cells can act as ’analog–to–delay converters’.

That is, the most strongly activated cells will tend to fire first and will signal a strong stim-

ulation, whereas more weakly activated units will fire later and signal a weak stimulation.

This coding scheme was proposed by Thorpe and Gautrais (1998), who argued that dur-

ing visual object recognition the brain does not have time to evaluate more than one spike

from each neuron per processing step. The idea is supported by other experimental stud-

ies (Tovee et al., 1993) and was used to implement learning in a number of neural network

models, based on the timing or the order of single spike events (Ruff and Schmitt, 1998; Van

Rullen et al., 1998, see also Section 6.1).
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4.2.3 Computational properties of spiking neurons

Spiking neural models can account for different types of computations, ranging from linear

temporal summation of inputs and coincidence detection to multiplexing, nonlinear opera-

tions and preferential resonance (Koch, 1999; Maass, 1999). Several recent studies employing

rigorous mathematical tools have demonstrated that through the use of temporal coding, a

pulsed neural network may gain more computational power than a traditional network

(i.e., consisting of rate coding neurons) of comparable size (Maass and Schmitt, 1996; Maass,

1997).

A simple spiking neural model can carry out computations over the input spike trains un-

der several different modes (Maass, 1999). Thus, spiking neurons compute when the input

is encoded in temporal patterns, firing rates, firing rates and temporal corellations, and

space–rate codes. An essential feature of the spiking neurons is that they can act as coinci-

dence detectors for the incoming pulses, by detecting if they arrive in almost the same time

(Abeles, 1982; Softky and Koch, 1993; Kempter et al., 1998).

When operating in the integration mode (see the integrate-and-fire model in Section 4.2.1),

the output rate changes as a function of the mean input rate and is independent of the fine

structure of input spike trains (Gerstner, 1999). By contrast, when the neuron is functioning

as a coincidence detector, the output firing rate is higher if the spikes arrive simultaneously,

as opposed to random spike arrival. More precisely, the neuron fires (e.g., signals a de-

tection) if any two presynaptic neurons have fired in a temporal distance smaller than an

arbitrary constant 	�, and do not fire if all presynaptic neurons fire in a time interval larger

than another constant 	� (Maass, 1999).

For a neuron to work as a coincidence detector, two constraints have to be satisfied: (1) the

postsynaptic potential has to evolve in time according to an exponential decay function and

(2) the transmission delays must have similar values, so that the simultaneous arrival of the

postsynaptic potentials which cause the neuron to fire will reflect the coincidence of presy-

naptic spikes (Maass, 1999). Note that not any spiking neural model can detect coincidence.

For instance, the resonator neuron fires if the input train of spikes has the same phase with

its own oscillation, but has low chances to spike if the inputs arrive coincidentally (Izhike-

vich, 2000).

In SpikeNNS, neurons can compute in two regimes: coincidence detection and threshold–

and–fire. Acting as coincidence detectors is more likely for hidden units, when they com-
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pute over pulses coming from the input layers. That is, because in our implementation, the

input spikes arriving on the afferent connections are affected by similar delays with a small

noise factor. The latency of the spikes is given by the firing times of the input nodes. The

operation in this computing domain depends also on the neural threshold and on the value

of the membrane time constant that describes how fast decays the posystynaptic potentials

(see Section 4.3.2).

In the threshold–and–fire mode, neurons perform a linear summation of the inputs in a

similar manner with the integrate–and–fire model. The integration of pulses over a larger

time interval is particularly required in the case of spikes arriving on the lateral synapses,

which are affected by a large range of delays (e.g., from � to �
 ms). The shift between com-

puting modes, i.e., coincidence vs. integration, and between different ways of integrating

the input signals is illustrated by our simulations in Sections 6.1 and 6.2.1 and discussed in

Section 7.1.3.

4.3 Neural model in SpikeNNS

The neural model implemented in SpikeNNS is a simplified version of the Spike Response

Model (Gerstner, 1991; Gerstner et al., 1993; Gerstner, 1999) referred to as SRM�. The Spike

Response Model (SRM) represents an alternative formulation to the well–known integrate–

and–fire model. Instead of defining the evolution of the neuron membrane potential by a

differential equation, SRM uses a kernel-based method. By doing this, the Spike Response

Model is slightly more general than the integrate–and–fire models because the response

kernels can be chosen arbitrarily, whereas for the integrate–and–fire model they are fixed

(Gerstner, 1999). According to Kistler et al. (1997) the Spike Response Model can reproduce

correctly up to �
� of the spike times of the Hodgkin-Huxley model. The model can also be

used to simulate the dynamics of linear dendritic trees, as well as non–linear effects at the

synapses (Gerstner, 1999). The Spike Response Model offers us a powerful computational

framework that captures the essential effects during spiking and has the advantages of a

simple and elegant mathematical formalization.

78



Chapter 4: Spiking neural model

4.3.1 Spike Response Model

The Spike Response Model describes the state of a neuron by a single variable, the mem-

brane potential ��. Figure 4.3a shows the time evolution of the membrane potential of neu-

ron � as a function of time �. Before any input spike has arrived at the postsynaptic neuron

�, the variable ����� has the value 
. The firing of a presynaptic neuron � at time �
�
�
� evokes

a postsynaptic potential in the neuron � modeled by the kernel response ! �� . Each incoming

spike will perturb the value of �� and if, after the summation of the inputs, the membrane

potential �� reaches the threshold � then an output spike is generated. The firing time is

given by the condition ����
�
�
� � � �. After the neuron has fired the membrane potential re-

turns to a low value which is described by the refractory period function �. After firing, the

evolution of �� is given by the equation:

����� � ����� ��� �
�
����

���

�
�
���
� ���

!����� ��� �� �
�
�
� � �

� �

�
�!��� ��� ���

�
���� ����� (4.1)

with � � �� �
�
�
� . The first term in the equation (i.e., the kernel ��) accounts for refractoriness

in the neuron behavior. The second term represents the contribution of all previous spikes

�
�
�
� of presynaptic neurons � on the membrane potential of neuron �. �� denotes the set of

neurons presynaptic to �, "� is the set of all firing times of neuron � and ��� are the synaptic

strengths between cells (see Figure 4.5).

The kernel !�� , as a function of ���
�
�
� , represents the time course of the postsynaptic potential

evoked by the firing of the presynaptic neuron � at time �
�
�
� (see Figure 4.4a). The shape of

the postsynaptic potential depends also on the time � � � � that has passed since the last

spike of the postsynaptic neuron. That is, because if the neuron is in a refractory period,

its response to an input spike is smaller than if the neuron is fully responsive. The last

term represents the effect on the neuron of an external driving current � �
� and the kernel

�!��� ��� �� is the linear response of the membrane potential to the input current and depends

on the time that has passed since the last output spike was emitted at � � (Gerstner, 1999).

SRM�

A simpler version of the Spike Response Model can be obtained by neglecting the depen-

dence of the !�� kernel on the term � � �� (i.e., the effect of the neuron’s last spike on the

postsynaptic potential function) and by considering a null external current. Consequently,
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Figure 4.3: (a) Spike Response Model, the membrane potential � of neuron � as a function
of time �. (b) SpikeNNS neural model, the time course of the membrane potential ��. � is
the neural threshold. See in text for more details on the time evolution of the membrane
potential.

equation 4.1 can be rewritten:

����� � ����� ��� �
�
����

���

�
�
���
� ���

!����� �
�
�
� �� (4.2)

This version of the Spike Response Model has been entitled SRM� and has been applied for

the analysis of computations with spiking neurons by Maass (1999).

The neural model implemented in SpikeNNS is completely specified by the set of Equations

4.2, 4.3, 4.5, which account for several important aspects of neural behavior: the spiking

nature of the neuron, the attenuation of the response at the soma resulting from synaptic

input, the absolute and relative refractory periods. The model also accounts for spike latency

and noise in the neural response (see description in sections below).

Figure 4.3b shows the time evolution of the membrane potential �� in the simplified neu-

ral model implemented in SpikeNNS. Compared with the membrane potential in the SRM

model represented in Figure 4.3a, the shape of the action potential is reduced to a formal

event, captured by a Æ pulse (the vertical line). After the spike emission, the membrane volt-

age is reset to a negative value and is kept there for � ms (see Section 4.3.3). The ascending

curve of the ! function also reduces to a pulse, followed by an exponential decay of the post-
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Figure 4.4: Postsynaptic potential function in SpikeNNS. The curve decay with time is plot-
ted for different values of the decay rate, given by the membrane time constant ��. Note
that the slope of the curve is negatively correlated with the value of the membrane time
constant.

synaptic potential (see Section 4.3.2 below). In SpikeNNS, Equation 4.2 is implemented by

the activation function ACT Spike (Section 5.1), which expresses how the membrane poten-

tial � of a node � is calculated at a given time �.

Let us now consider the mathematical description of the two kernels ! and � required in the

Equation 4.2.

4.3.2 Postsynaptic potential function

In SpikeNNS, each hidden neuron is connected to a number of other neurons either from the

same layer or from an input or another hidden layer. The firing of any node, i.e., input or

hidden, is transmitted to all its postsynaptic units, where it evokes a postsynaptic potential

of some standard form (see Figure 4.4). The spike transmission is affected by a noisy delay

�, which in our implementation is proportional with the Euclidian distance between the

presynaptic and the postsynaptic node (see Section 5.3.2). This delay corresponds to the

axonal and dendritic transmission delay of real neurons (Koch, 1999).

When the presynaptic spike reaches the postsynaptic unit, the postsynaptic potential (PSP)

jumps to a maximum value, i.e., in our simulation this value is set to �. Afterwards, it

decays exponentially towards the resting value, with a rate being given by the time constant

��. In our model, the postsynaptic potential !�� is described as a function of the difference
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� � �� �
�
�
� � � :

!����� �  
���
�

��
����� (4.3)

with

���� �

��
�

�� if � 	 
�


� otherwise�
(4.4)

where � is the time of consideration, ��
�� is the time of the presynaptic node firing and �

is the delay on the connection. The Heaviside function sets the postsynaptic potential to a

null value, for any time moment � that precedes the arrival of the presynaptic spike, that is

� � �
�
�
� � �. Note that in our implementation the postsynaptic potential can only take pos-

itive values. Negative values of the postsynaptic potential, corresponding to the inhibitory

synapses, are obtained through the multiplication of the PSP value by a negative weight

value.

The decay of the postsynaptic potential with a rate given by the membrane time constant

�� reflects the attenuation with time of the synaptic inputs in the biological neuron (see Sec-

tion 4.1). The choice of this parameter has a significant effect on the way multiple synaptic

inputs are integrated in time (see below).

Temporal summation of postsynaptic potentials

A single synaptic input is rarely sufficient to generate an action potential. The response

of a neural cell is usually determined by the way it integrates multiple synaptic inputs.

The basic arithmetic that dendrites of a real neuron compute is still a matter of controversy

(Poirazi and Mel, 2000). Both linear and nonlinear interactions between synaptic inputs in

the brain have been described by neurophysiological experiments (Cash and Yuste, 1999;

Koch, 1999) and explored computationally with different formalisms (Rall, 1977; Mel, 1992).

In SpikeNNS, we consider that both excitatory and inhibitory inputs accumulate linearly in

time.

The total synaptic input to a hidden neuron � at some moment � is given by the contribution

of all previous spikes of the presynaptic neurons (see Figure 4.5). The set of presynaptic

neurons to the node � is �� � �� � � is presynaptic to ��. The set of all firing times of the

presynaptic node � is given by "� � � �
�
�
� �����

�
�
� � � ��. In SpikeNNS, a limited number
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Figure 4.5: The presynaptic contribution to the membrane voltage � ��� of neuron �. Each
presynaptic neuron � in �� emits a series of spikes "� with firing times �

�
�
� . Neuron � com-

putes the weighted sum of the decayed PSPs. If the sum exceeds the threshold then an
output spike is generated.

of spikes per neuron are stored (e.g., a maximum of �
 spikes/neuron were stored for the

simulation run in Section 6.1).

In our model, the slope of the postsynaptic potential curve is negatively correlated with the

value of the membrane time constant �� (see Figure 4.4a). That is, for large values of ��,

the postsynaptic potential persists longer and it allows the temporal summation of inputs

that produce in this way, an aggregate PSP larger than would be elicited by an individual

input. The neural threshold � and the membrane time constant �� represent the principal

parameters in determining how many excitatory inputs are needed for a neuron to fire. For

example, the choice of a membrane time constant �� � � (the blue graph in Figure 4.4a)

causes an exponential decay of the postsynaptic potential from the maximum value to 
,

in about �
 ms. This relatively slow decay of the postsynaptic potential curve favors the

significant summation of the synaptic inputs which arrive in a time window no larger than

� � � ms. For instance, given the above value of the ��, in the simulations run in Chapter

6, the threshold values were set so that, at least three synaptic inputs (e.g, most commonly �

or � inputs) were necessary for a postsynaptic spike to be emitted.

4.3.3 Refractoriness

After emitting the spike a node enters a refractory period. In the SRM� model the neuron

behavior in the refractory period depends only on the last firing moment � �. This means

that the effects of any previous own spikes are discarded. Gerstner (1999) referred to this as
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Figure 4.6: Refractory function in SpikeNNS. The Parameters # � 
�	 and � � �. See in text
for the meaning of these values.

the ’short-term memory’ approximation, that is, the neuron remembers only its most recent

firing. The approximation can be considered correct if the intervals between two spikes

are much longer than ��. This would make the influence of previous own spikes on the

current refractory behavior, negligible. The refractory period is described as a function of

the difference $ � �� �� and is modeled by the equation:

���$� � �  
���$� � �����$��� (4.5)

with

���$� �

��
�

� if 
 � $ � ��

�� otherwise
(4.6)

where� is the neural threshold and # and � are arbitrary parameters which adjust the slope

of the decay curve (see Figure 4.6) (formula adapted after Sougné, 1999).

After a spike emission, the biological neuron behavior is characterised by the existence of

two periods. First, there is an absolute refractory stage, while no further action potentials

can fire. This is followed by a relative refractory period when it is difficult, but not impos-

sible to generate an action potential (Section 4.1). In the neural model described here, the

absolute refractory period lasts � ms, during which the Heaviside function (Equation 4.6)

maintains the value of the � kernel at �
 (see Figure 4.6). The duration of the relative re-

fractory period depends on the values of the parameters # and �. In Figure 4.6 these value

are set so that the average inter–spike value is �
 ms.
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4.3.4 Coding of the input patterns

When computing with temporal patterns in a network of spiking neurons, the input and

output to the model is represented by vectors of time series, instead of vectors of analogical

numbers, as in conventional neural network models (Maass, 1999). In our implementation,

an input pattern consists of a series of firing times "� of the input units � that encode the

training values, as explained below.

The latency code described in Section 4.2.2 represents analog information through differ-

ences in the firing times of the neurons. Here, we define a coding scheme, where the analog

values 
� can be encoded by the time advances of the input spikes to a reference time � ���

(see Hopfield’s formulation in Section 4.2.2). Figure 4.7 shows an input pattern represented

by the spikes on five input units. An input spike has a large contribution on a postsynaptic

node potential if it has just reached the node and a smaller effect if its arrival is less recent.

Given equal transmission delays �, a vector of real values �
�� ���� 
�� with 
� � �
� �� can

be encoded in the postsynaptic potentials of the input spikes as a function of the difference

between an arbitrary value ���� and the input units firing times �
�
�
� :


� � !����� � �
�
�
� � �� �  
� ��

���� � �
�
�
� � ��

��
�� (4.7)

Let us explain how a network can be trained with input values coded by this scheme. For

instance, if the firing time of an input unit is �
�
�
� � � ms, the delay value is set to � � �ms,

���� � �
 ms, and �� � � ms, then a hidden unit receives a signal 
� � 
��, given by the

postsynaptic potential in Equation 4.7 (see first PSP value in Figure 4.7a). This value can be

further used for the training of the hidden layer weights. For instance, in a self-organization

process, weights are adapted as a difference between the input (! � 
��) and the current

value of the weight. Accordingly, the weights of a winner for this input will learn the value

of 
��. Note that, learning on the synapses of spiking neurons depends also on their output

values, in a different way that it is the case for the continuous, rate–coding neurons. That

is, learning is applied only to the excitatory synapses of those neurons, which fire. The

later a hidden neuron fires, the smaller is the contribution of the input values on its afferent

synapses change (see also Section 5.2.3).

In SpikeNNS, two coding schemes are used: time coding and coding by synchrony. Which

scheme is used depends on the way the input patterns are specified and on the operation

mode of the neurons (see Section 4.2.3). That is, neurons can either operate as integrators,
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Figure 4.7: An input pattern consists of a train of spikes emitted at the times �
�
�
� � (a) A time

coding scheme, where values are encoded in the spikes relative latencies to the � ��� moment.
In left the time advances of the input spikes are shown, computed as � ���� �

�
�
� ��. The PSP

values represent the real values seen by the hidden units and which are used in training the
synaptic weights. (b) Coding by synchrony, where the hidden neurons spike by detecting
the coincidence in the firing of the input units.

by summing up the input values that arrive in a large time window, or they can function as

coincidence detectors, by detecting the synchrony in the input spikes emission. Accordingly,

the temporal coded inputs can be specified in two ways.

Firstly, real values can be encoded as described above, by using the spike time advances to a

fixed reference time ����. This method offers complete control over what values are encoded

and received by the hidden units. Secondly, information can be encoded in the synchronous

emission of the input spikes. This means that the hidden units can detect the coincident

firing of a subset of input units. It represents a means to generate hidden units selectivity

for a neural event that is characterised by the correlated firing of a set of presynaptic units.

With regard to how the time–coded input patterns are effectively implemented and applied

in SpikeNNS, it consists of the following scenario. The series of firing times "� correspond-

ing to one pattern read from the input file, are converted in series of � �s and 
�s that are

applied to the hidden network at the times �
�
�
� . All the � values representing input spikes

with the same timing �
�
�
� are collected in a subpattern with that time stamp. By doing this, a

single time–coded pattern generates as many subpatterns as different firing times are in the
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original input pattern.

4.4 Learning with spiking neurons

Part of the work carried out on this thesis has focused upon the implementation of an exten-

sion of the SNNS simulator (Stuttgart Neural Networks Simulator) to support simulations

with spiking neurons (see Chapter 5). The new simulator version, SpikeNNS, implements a

general training framework adapted to the characteristics of learning with spiking neurons

and temporal coded input patterns (see Section 5.2.3). By creating a general learning frame,

the simulator is not limited to the learning rules currently existent in SpikeNNS, but it can

be easily extended with any learning functions.

The current version of the simulator implements several learning rules for a self–organization

process with spiking neurons. Issues of learning with spiking self–organizing maps have

been discussed in Section 2.2.5. The adaptation rules implemented in SpikeNNS for the

self-organization of a spiking neural map with plastic lateral synapses are described in Sec-

tions 6.1 and 6.2 along with the presentation of the simulations performed.

In Section 2.2.5, we emphasized the crucial role played by the horizontal connectivity in

development in the real and artificial networks. Accordingly, significant modeling efforts

have been dedicated to the integration of learning in lateral synapses in the models of cor-

tical functions. Most of these attempts focused on exploring Hebbian–like association rules

(see Section 2.2.5). More recently, experimental investigations shown that the relative tim-

ing of the pre– and post–synaptic neurons plays an important role in determining whether

a synapse is potentiated or depressed (Markram et al., 1997; Zhang et al., 1998). Newer

formulations of the Hebbian rule take into account the temporal order of spiking, so that

potentiation occurs only if the postsynaptic excitatory potential precedes the firing of the

postsynaptic neuron by at most �
 ms. Depression is the rule for the reverse order (Song et

al., 2000). In the following, we describe briefly a number of learning rules that illustrate dif-

ferent ways to compute and learn with spiking neurons. Some of them will be implemented

in future work.

Learning on neural firing rates. Choe and Miikkulainen (2000) proposed an adaptation of

the lateral weights according to the Hebbian rule and based on the spiking rates of leaky
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integrate-and-fire neurons:

������ �
������ �� � % � ����

�
� (4.8)

where ������ is the connection weight between neurons �� �, ������ �� is the previous value

of the weight, % is the learning rate. �� and �� are the average spiking rates of the neurons

computed after the network has reached a stable rate of firing. � is a normalization factor

that prevents the excessive increasing of the weights. This learning algorithm was used

successfully for image segmentation and contour binding by the synchronization of neural

group activity (Choe and Miikkulainen, 2000).

Learning on the spike times synchronization. Sougné (1999) proposed a neurocomputa-

tional model for binding and inference that solves the binding problem by means of oscil-

lation synchrony. Learning of the connection weight between two nodes � and � is defined

by Equation 4.9. This expresses the fact that with every synchronous firing of the nodes, the

weights ��� as well as ��� are increased by a constant value 	:

���
�� �

��
�
	� if ��
�� � �

�
�
�


� otherwise�
(4.9)

The delays of the connections also undergo learning, so that at each synchronous firing of

the nodes � and �, the delay ��� as well as ��� are set to a fixed value, which favors the

synchronization of neurons at a certain frequency of oscillation. A decrease of the connection

weights (i.e., forgetting of the binding) occurs if the two nodes do not fire inside a certain

time cycle (i.e., up to 250 ms). This type of learning is successfully used to implement a short

time memory, binding on multiple instantiation and with multiple predicates.

Spike–timing dependent plasticity (STDP). Song et al. (2000) proposed an adaptation of

the Hebbian learning rule, which takes into account the relative timing of the pre- and post-

synaptic action potentials. The synaptic modification arising from a pair of pre- and post-

synaptic spikes separated by a time interval �� is given by the function " ����:

" ���� �

��
�

&� 
����'���� if �� � 


�&� 
�����'���� if �� � 

(4.10)

where &� and &� determine the maximum amounts of synaptic modification and the pa-

rameters �� and �� determine the ranges of pre–to–post synaptic interspike intervals over

which synaptic change occur. Strengthening of a synapse occurs for pre–synaptic action

potentials which precedes postsynaptic firing by no more than �
 ms. Weakening of the
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synapse is produced by a presynaptic action potential that follows the postsynaptic spike.

The main role of this form of STDP is to strongly weaken causally ineffective inputs, hence,

synaptic weakening dominates over synaptic strengthening.

Spike–timing learning has been mostly implemented for excitatory synapses, due to the rich

experimental data showing how potentiation and depression of these synapses occurs in

the brain. Conversely, there is much less neurobiological data from which to conceptualize

the modification rules for inhibitory synapses, and consequently fewer cognitive models

account for the plasticity of inhibitory synapses (see Roberts, 2000; Soto Trevino et al., 2001).

Learning in the inhibitory synapses. In SpikeNNS learning in the inhibitory synapses is

implemented according to the rule proposed by Levy and Desmond (1985). The authors

proposed that presynaptic activity paired with postsynaptic inactivity leads to the potenti-

ation of the active inhibitory synapse, while postsynaptic activity is required (indifferent of

the presynaptic activity) for a loss of strength of the inhibitory synapse (see also Section 6.1).

More recently, experiments in the mormyrid electric fish have suggested that pairing delays

between pre- and post-synaptic spikes that cause excitatory synapses to decrease cause the

inhibitory synapses to increase. Thus, if the postsynaptic inhibitory potential follows the

postsynaptic spike within a time window of about �
 ms, than the inhibitory synapses is

potentiated (Roberts, 2000).
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SpikeNNS simulator: design and

implementation

The development in the last decade of a third generation of neural networks (Maass, 1997)

has required the design of dedicated simulation environments. Simulation platforms either

for the detailed modeling of individual neurons, such as Neuron (Hines and Carnevale,

1995) and Genesis (Bower and Beeman, 1998) or dedicated to large–scale neural simula-

tions, such as SpikeNet (Delorme et al., 1999), Infernet (Sougné, 1999), NSL (Weitzenfeld

et al., 1999) have been created in recent years. Due to the large attention given to realistic

modeling of the structure of biological neurons, the most powerful and flexible simulators

in existence today implement detailed neural models. As a result, these simulators become

more appropriate for the modeling of single neuron behavior and less suitable for large-scale

modeling of cognitive phenomena.

The aim of the modeling work presented in this thesis is to provide an example of how

cortical processes, such as movement planning or visuomotor mapping, are grounded in

the neural substrate. In Section 4.3 it was argued that a simplified neural model, such as

the Spike Response Model (SRM) (Gerstner, 1999) corresponds best to our modeling goals.

To date, SRM has been implemented only as part of simulations that are dedicated to spe-

cific tasks (Gerstner, 1999; Lerchner, 2001). Therefore, in the absence of a flexible simula-

tion platform that can be adapted to our modeling goals, the approach taken in this thesis

was to create a library of functions that model networks of SRM neurons. This library was

implemented as an extension of the general purpose–simulator Stuttgart Neural Network
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Simulator (SNNS) (Zell et al., 1992).

This chapter presents the implemented system, entitled SpikeNNS. We begin in Section 1

by describing the implementation of the neural model introduced in Chapter 4, Section ??.

When modeling large–scale networks of spiking neurons with plastic synapses, the time and

memory efficiency of the simulation became essential issues in the design of the simulator

(Jahnke et al., 1999; Mattia and Del Giudice, 2000). In the first section, we present several

versions of the neural model implementation, aimed at decreasing the computational work-

load per neural unit. Section 2 focuses upon how learning with networks of spiking neurons

is implemented. In this part, we deal with efficiency issues at the network level, partially

solved by implementing a discrete event–driven strategy. The issue of high neural activity

patterns is addressed, when spike events on the order of �
 � are generated in the network.

Several strategies are proposed that lead to a highly efficient event–driven algorithm that

reduces the simulation time up to �
 times compared to the baseline algorithm. Finally,

Section 3 outlines the configurable features of the SpikeNNS simulator.

5.1 Implementation of SpikeNNS neural model

The neural model implemented in SpikeNNS is a simplified version of the Spike Response

Model (Gerstner 1999), described by the set of Equations 4.2, 4.3, and 4.5 (Section 4.3). This

section presents the effective implementation of the neural model and focuses upon the

time–efficiency of the simulation.

5.1.1 Design considerations

The implementation of a neural model requires consideration of several design issues. One

issue concerns the type of the synaptic connectivity employed. This falls into two cate-

gories: (1) the regular connectivity follows some deterministic rules, giving rise to patterns

such as receptive fields or topographical projections; (2) the non-regular connectivity consists

of sparse, probabilistic connections. In SpikeNNS both categories of connection patterns are

implemented. However, while regular connections are relatively simple to configure and

manage efficiently with respect to the time and memory load, sparse connections are more

difficult to deal with. The difficulty concerns both the generation of the probabilistic pattern

of synapses, and the efficient management of such a pattern (see Section 5.3.2).
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(a) Sender oriented scheme (b) Receiver oriented scheme

Figure 5.1: Data structures used to store the connections list. (a) A sender-oriented con-
nectivity stores the weights and addresses of the output connections � � (b) In the receiver-
oriented scheme the weights and addresses of input links � � are stored.

A commonly used method in representing the sparse connectivity pattern is to create a list

of connections, one for each neuron ��. Each item in the list contains the weight of the

connection and the address �� of the pair unit. If the address stored denotes the target

neuron �� to which �� sends spikes, then the scheme is called sender–oriented (Figure 5.1a).

When the list stores the addresses of the input nodes, that is, those neurons from which

�� receives spikes, the scheme is referred to as receiver–oriented (Figure 5.1b). Each of these

schemes demands different processing of spike generation and distribution.

In a receiver–oriented scheme it is the job of the receiver unit to handle the incoming spikes

and to set the transmission delays. Whenever a unit computes its activation it checks all

its input synapses to see whether a spike has been emitted on any of them. If this is the

case, then it sets the delay of the spike transmission (see lines 3-6 in Algorithm 1). It is

important that the algorithm ensures that the delay for each spike is computed only once.

Alternatively, in the sender-oriented scheme, the distribution of spikes and the generation

of synaptic delays are managed by the emitting neuron.

A number of simulators implementing the traditional rate–coding neural model use the

receiver-oriented scheme (i.e., SNNS). The reason for this is that scheme can be advanta-

geous in the case of a continuous neural output function, which causes constant firing ac-

tivity on synapses. However, this is not the case with spiking neurons activity. In Sections
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5.1.2 and 5.1.3 the appropriateness of each connectivity scheme for the implementation of

the spiking neural model is discussed.

Another design issue which has to be considered at the neural level is the method by which

the integration of the membrane potential is realized (Equation 4.2, Section 4.3). A straight-

forward way to compute the sum term in Equation 4.2 consists of the following. When-

ever an update of the unit activation is requested, the values of all previous postsynaptic

potentials coming from all presynaptic nodes are computed, integrated and added to the

refractory kernel. The optimization of this method is possible if we consider that the depo-

larization of the postsynaptic potential ! follows a deterministic function (see Equation 4.3).

Therefore, its value at time � can be expressed as a function of its previous value at � � ��.

This idea is explored in Algorithm 3 in Section 5.1.3.

Besides considering how we integrate a neuron activity, we have to decide when we do this

integration. Solutions to this problem reside in using either a synchronous, time-driven

integration of unit activity or an asynchronous integration. Both strategies are implemented

and compared with respect to their efficiency for simulation of pulsed neural networks.

5.1.2 Activation and output functions - version 1

The first version of the Spike Response Model (Section 4.3) in SpikeNNS was created using

the SNNS receiver-oriented connectivity scheme. Equations 4.2, 4.3 and 4.5 have been im-

plemented within the body of two functions: the Activation function (ACT Spike) and the

Output function (OUT Spike). A straightforward (non-optimal) implementation of these

functions is shown in Algorithm 1. Note that the Output function could have been incor-

porated in the Activation function, but is kept separate to ensure compatibility with the

implementation of these functions in SNNS.

To get a quantitative measure of the complexity of the algorithms presented in this section,

we estimate the scaling of the number of operations required per algorithm, with the vari-

ables of the simulation process. The main variables are: � , the time of the simulation; � , the

number of neurons in the network; (, the synapses per neuron; " � , the set of non-negligible

firing times on each synapse. Other variables that affect the number of the operations exe-

cuted will be introduced in the following subsections. Note that our measure �) is given

by the number of operations in the performance critical parts (i.e., such as loops) and does

not reflect the exact number of low-level operations required in the implementation. In the
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Algorithm 1 ACT Spike v1 -receiver oriented
Require: node �, current time �
Ensure: activation value �����

1: ����� � 

2: for all � � �� do �presynaptic nodes to ��
3: ��� = get spike(�) �receiver unit checks for new spike from this unit�
4: if ��� 
�F� then
5: ��� = noisy delay(length(���)) �generate delay�
6: insert spike (���� "�) �insert the spike in the set of firing times�
7: end if
8: for all ��� � "� do �all previous firing times of node ��

9: �(� �
� ��� � !��� ��� � ��� ) �compute �th postsynaptic potential�

10: ����� � ����� � �(� �
� ��� � ��� � compute weighted sum of PSPs�

11: end for
12: end for
13: �*" ��� � ���� �

�
�
� � �calculate refractory period�

14: ����� � ����� ��*" ��� �subtract REF from the PSPs aggregate�
15: if ����� 	 � then �if the neuron fires�
16: �

�
�
� � � �record firing time�

17: end if
�No propagation of emitted spike is done by the sender unit�

Algorithm 2 OUT Spike
Require: activation �����
Ensure: output value )����

1: if ����� 	 � then �the neuron fires�
2: )���� � � �emit a signal, set output to 1�
3: else
4: )���� � 
 �no signal�
5: end if

case of Algorithm 1, the critical computational effort is represented by the computation of

the ! kernel (i.e., given by an exponential function) for "� times, for each input synapse in (

(lines 8-11). This entails �) � ( � �"� �. In addition, checking the firing activity of each input

synapse (lines 3-7, Algorithm 1) needs a supplementary effort that scales with (. Then, the

estimated number of operations for Algorithm 1 is:

�)� � ( � ��"� �� ��� (5.1)
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5.1.3 Acceleration of the activation function - version 2

Let us now consider the sender-oriented connectivity scheme. In Algorithm 1, the receiver

unit checks the activity of all incoming synapses at each integration step (lines 2-7). By con-

trast, in a sender–oriented strategy there is no need for this additional operation. Whenever

a spike is generated, it becomes the task of the emitting unit (or of the main simulation en-

gine) to compute the propagation delays for all output synapses. Because the propagation is

performed only once for each spike, the uniqueness of the delay value per spike is ensured.

The sender–oriented scheme is implemented in Algorithm 3.

Algorithm 3 ACT Spike v2 - sender oriented
Require: node �, current time �, previous integration time ���� and previous weighted sum

�(��������
Ensure: activation value �����

1: 
 � �� ���� �elapsed time from last integration�
2: �(����� � �(�������� �  
���
'��� �decay the sum of past PSPs�
3: for all ��

�� with ��� � ���� do �only spikes that occurred since last integration�
4: �(� �

� ��� � !��� ��� � ��� �

5: �(����� � �(����� � �(� �
� ��� � ��� �add new weighted PSP to the sum�

6: end for
7: ����� � �(����� �set the voltage to the aggregate of inputs�
8: �*" ��� � ���� �

�
�
� � �compute refractory period�

9: ����� � ����� � �*" ��� �subtract refractoriness �
10: if ����� 	 � then �if the neuron fires�
11: �

�
�
� � � �record firing time�

12: end if
�Note that propagation of spikes is handled by the main simulation engine (lines 14-17
in Algorithm 4)�

Algorithm 1 can be further improved through the judicious choice of the method used to

integrate the membrane potential. The new version of the algorithm exploits the fact that

between any two firing moments, a neuron depolarization has a deterministic evolution.

Rather than computing the sum over all the postsynaptic potentials at each time step, the

contribution of the previous spikes effects on the node � is stored and it is decayed every time

when a new potential has to be added. Thus, at the current time moment � the previous sum

computed at time ���� is decayed by the formula �(����� � �(�������� �  
������ �����'���,

where �� is the time membrane constant (line 2 in Algorithm 3).

Apart from decreasing the simulation time this method has the advantage of minimizing

the memory load. Thus, for the receiver–oriented scheme the transmission delays ��
� of
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all spikes in "� emitted on each synapse � in the network have to be stored. For instance,

in the case of a network with �� units and 10� connectivity, where the last �
 spikes are

stored for each synapse, the additional memory load is on the order of �
� floats. Instead, in

the sender-oriented scheme only two values are kept within each neuron structure: the last

integration moment ���� and the corresponding decayed sum �(��������.

As a result of the optimizations implemented, the computational effort of the Algorithm 1

is reduced in Algorithm 3 at �) � �( � �"� , where � and � are two variables which range

between 
 and �. The term �"� represents the number of spikes released on a single synapse

between two integration moments. The value of the parameter � depends on the time reso-

lution of the simulation. By considering an algorithm that increments simulation time in fine

clock steps (e.g., 1 ms) (see Section 5.2.1) or which integrates the neuron’s activity for each

new spike received on a synapse (see Section 5.2.1) than �"� is 1. This means that no more

than one new spike per synapse has to be processed at any call of the activation function.

The term �( represents the percent of synapses on which new spikes are emitted between

two integration moments. Hence, the estimated number of operations for computing a sin-

gle unit in a time bin reduces to

�)� � �(� (5.2)

with � a variable dependent on the network activity. The differences in performance be-

tween the two versions of the Activation function (Algorithm 1 vs. 3) becomes more obvious

when these algorithms are employed for the integration of a large number of units over a

long time interval (see Section 5.2.1).

The algorithms presented above illustrate in turn, how receiver– and sender–oriented schemes

may be implemented separately. However, by using the SNNS libraries, it has been possi-

ble to construct a mixture of these algorithms that uses both sets of data structures. This

is, because SNNS implements a receiver-oriented scheme, to which we added, rather than

replacing (i.e., for compatibility reasons the default connectivity could not be deleted) struc-

tures for the sender–oriented connections.

By doing this, we found that the most time efficient method for integrating spikes may be a

composite version of the two algorithms. That is, during a first time period when the input

patterns are applied, values associated with these spikes are stored in the input synapses,

using the receiver–oriented structures. These spikes are integrated only once at an arbitrary

time moment ����, by using the first algorithm (see description of time coded input patterns

96



Chapter 5: SpikeNNS simulator: design and implementation

in Section 4.3.4). After first integration is done at ����, further spikes are integrated one at

a time, using the second algorithm. The advantage of using the first algorithm to store and

process the values of the input patterns spikes, is that it avoids the generation and handling

of a spike event for each firing of an input unit. In this way it is possible to significantly

reduce the number of events the algorithm has to deal with. Nevertheless, this is not a

portable solution, because it makes use of two lists of connections that can introduces a

significant memory load. For spiking neuron simulations the sender-oriented connectivity

is the best choice from the two schemes.

What remains to be explained for Algorithm 3 is how it computes the values of the incoming

postsynaptic potentials (lines 3 and 4). This is because, by implementing a sender–oriented

connectivity solely, a unit does not have access to the values of the input synapses (i.e., the

weights and spikes delays). Consequently, it does not know how to calculate the postsynap-

tic potentials. A possible solution is to parse the output connection structures of all units in

the network to find a neuron input synapses. However, this is an exhaustive, time consum-

ing solution. An alternative is to create a data structure for each spike emitted on a synapse

that stores the necessary values: the addresses of the emitting and target units � �� �� , the fir-

ing presynaptic time ��� , the transmission delay ��� and the synaptic weight ���. This solution,

of a spike-oriented nature, in contrast with the synapse-oriented scheme, leads us naturally

into an event-driven approach to the simulation (see Section 5.2.1 below). The complete

description of how these spikes are created and delivered is described in Section 5.2.2.

5.2 Simulation of networks of spiking neurons

Up to this point, we focussed upon the simulation of one time step of neural behavior. This

consists of computing the neuron’s membrane potential by integrating the effects of the

incoming spikes (i.e., the postsynaptic potentials) with the effect of the neuron’s own spikes

(i.e., the refractoriness). In this section, we address the issue of information processing and

learning within a network of spiking neurons during a certain time interval.

An essential implementation aspect in building discrete simulations concerns the way the

simulation time is progressed. Performing a simulation means to mimic the occurrence of

events (i.e., spikes) as they evolve in time and recognizing their effects as represented by

states (i.e., network activity) (Ferscha and Tripathi, 1994). The simulation of one basic time

step for a whole network is called a time slice (Jahnke et al., 1995). Most commonly each time
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slice involves four operations:

� Activity propagation. Spikes from input or hidden units are propagated through the

hidden layers of the network.

� Integration. Each unit in the network calls the Activation function and integrates its

inputs.

� Output. If a unit fires, the spike time is recorded and the signal is managed according

with the implemented strategy (see Sections 5.1.2, 5.1.3).

� Learning. Adaptation of the synaptic weights can follow each pattern application or

wait until all input patterns are applied. Information concerning learning (e.g., spikes

timings, frequency of spiking) may be recorded for each time slice.

In this section, we present a number of algorithms for the simulation during a time period

� , of the four operations described above. The first three of them, namely the activity propa-

gation, the integration and the output are implemented in the function PROPAGATE Spike.

Learning is applied after a time coded pattern is presented to the network and the activity is

propagated through the hidden layers for a certain time interval. A general training frame-

work is described in the LEARN Spike function. Note that when computing with spiking

neurons, a single time coded pattern actually consists of a set of input signals, each applied

as a distinct sub-pattern at a certain time moment (see description of input patterns applica-

tion in Section 4.3.4). Hence, we bear in mind that the PROPAGATE Spike function applies

only a time coded pattern, consisting of several sub-patterns, while the entire training set is

learned using the LEARN Spike function.

5.2.1 Continuous vs. event–driven protocols

Currently, two kinds of discrete simulation are distinguished with respect to the way simu-

lation time is progressed: time driven simulation and event driven simulation. In a time driven

simulation, time is advanced in steps of a constant size �� (Ferscha and Tripathi, 1994). The

choice of �� influences the simulation accuracy. That is, ticks short enough to guarantee the

required precision generally imply longer time simulation. The continuous, time–driven

protocol appears to be the de facto standard for detailed neural modeling (Bower and Bee-

man, 1998). This is because, it ensures the time resolution needed for the integration of the

differential equations describing the model.
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On the other hand, large–scale simulations that involve learning in plastic synapses and long

training procedures are faced with important time and memory efficiency issues. These are

usually tackled through the use of simplified neural models and event–driven strategies

(Watts, 1994; Mattia and Del Giudice, 2000; Claverol et al., 2002). Efforts have also been

made to implement simulations on parallel computers (Fujimoto et al., 1992; Brettle and

Niebur, 1994; Jahnke et al., 1995) or to create dedicated hardware (Schoenauer et al., 1998;

Elias and Northmore, 1999).

Continuous time algorithm

A straightforward implementation of a continuous–time algorithm for the simulation of the

network activity during a training step is presented in Algorithm 4.

Algorithm 4 PROPAGATE Spike - time driven
Require: current pattern number �, simulation time ��, time out ����

1: 	� � �� �set the time clock�
2: while 	� � ���� do �while current time less than time out�
3: for all + � ,��$���� do �all input units�
4: if +�	�� � � then �if there is an input value at the current moment�
5: 
$�� = OUT Identity(+�	��) �send a pulse�
6: for all � � �� do �output synapses to hidden nodes�
7: ��� = noisy delay(input delay) �set delay for input spike from + to ��
8: end for
9: end if

10: end for
11: for all � � Net do
12: �	�� = ACT Spike(�� 	�) �call activation function�
13: 
$�� = OUT Spike (�	��)
14: if 
$�� then �propagate spike to postsynaptic nodes�
15: for all k � �� do �all postsynaptic nodes to ��
16: ��� = noisy delay(length(���)) �compute spike delay�
17: end for
18: insert(�, LearningNodes) �synapses of firing units are subject to learning�
19: end if
20: end for
21: 	�� � �� �increment the current time contor�
22: end while

Let us consider the computational effort demanded by the execution of the Algorithm 4,

when the activation functions described in Section 5.1 are used in turn (in line 12). Thus, by

using the first version of the activity function from Algorithm 1, to compute a network with
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� neurons, ( synapses per neuron, during a time interval � with a time step ��, a number

of operations are required:

�)� �
�

��
�� � ( � ��"� �� ���� (5.3)

The first term in the sum accounts for the computational effort needed to integrate the ac-

tivities of all units (lines 11-13, Algorithm 4). The second term estimates the operations

required for the distribution of spikes that occur in a time slice, at a network activity � (lines

14-17, Algorithm 4). The value of � is defined as the average number of spikes in a time slice

divided by the number of neurons and takes values in the range of �
� ��. When using the

second version of the activity function (Algorithm 3), both computational complexities scale

with the network activity �. The number of operations reduces to:

�)	 �
�

��
� � �� � ( � �� (5.4)

These two estimations of the number of operations, neglect the computational effort re-

quired for the distribution of the input spikes (lines 3-10, Algorithm 4). This is mainly be-

cause, input units have an identity activation function that does not require the computation

of a response kernel and the total number of input patterns is small compared to the number

of times the network activity during a training step.

The number of operations implemented by Algorithm 4 is higher when using the first ver-

sion of the activation function. This is, because at each time step, the activity of every unit is

updated by computing the ! values for all presynaptic firing times in �"� � � �
. Conversely,

the second version of the algorithm decreases the number of operations, by reducing the

computational effort per neuron to the integration of one spike from each active synapse �(

in the network.

Both implementations of Algorithm 4 operate in a synchronous way. They integrate all

neurons � at each time step �'�� that determines their poor scaling with the network size

and the simulation time. Moreover, the global integration of the network activity may not be

necessary, due to the fact that at each time moment only a small number of neurons receive

a new spike. An observation can be made here, with respect to the differences between the

simulation of spiking neurons and rate–coding neurons. Learning based on a continuous

neural model makes use of the integration of network activity at each time step. This is

because, the output synapses are constantly active due to the continuous output function

of the neurons. By contrast, the output of spiking neurons are discrete, rare events, whose

transmission is affected by axonal latencies and which reach the target units at certain time
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moments. A simulation which discretizes the computation of unit states (e.g, activities) at

spike-event occurrences seems more appropriate for a pulsed neural network simulation.

Event driven algorithm

An alternative to time driven simulation is to implement an event driven strategy (Ferscha

and Tripathi, 1994). Instead of advancing the simulation time in a continuous way and

processing events synchronously at each clock tick, the integration of a unit activity can be

performed in an asynchronous way, triggered by the reception of one or several spike-events

(Watts, 1994; Grassmann and Anlauf, 1998; Mattia and Del Giudice, 2000). In this section we

describe Algorithm 5 that implements a basic event-driven strategy for the computation of

the network activity during a training step.

Algorithm 5 PROPAGATE Spike - event driven
Require: current pattern number �, simulation time ��, time out ����

1: 	� � �� �set the time clock�
2: (- � �$+ �init spike list�
3: while 	� � ���� do �while current time less than time out�
4: if (- = �$+ � 	� 	 time(next subpattern(p)) then
5: apply inputs (next subpattern(p)) �call lines 3-10 Algorithm 4�
6: end if
7:  = first event((-)
8: 	� �  ���# �simulation time becomes the time of the current spike �
9: if not nul event( ) then

10: � �  ���.� � �get the spike’s target unit�
11: �	�� = ACT Spike(�, 	�) �integrate activation for target unit ��
12: 
$�� = OUT Spike(�	��)
13: (- = remove first event( � (-) �delete event  from the list�
14: if 
$�� then �propagate spike to postsynaptic nodes�
15: for all k � �� do �all postsynaptic nodes to ��
16: ��� = noisy delay(length(���))
17:  = create spike event(�� 	�� ��� )
18: (- = insert event order( � (-)
19: end for
20: insert(�, LearningNodes) �synapses of firing units are subject to learning�
21: end if
22: end if
23: end while

The core of Algorithm 5 consists in processing spiking events from a chronologically ordered

list (- (lines 7- 13). Whenever a unit fires a spike, a new event  is created and inserted
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in order in the spike list (- (lines 17-18). Each new spike is fully characterized by a time

stamp representing the delivery moment and the index of the target unit. The input patterns

are applied when the event list becomes empty or when the current time of the simulation

exceeds next sub-pattern time stamp (lines 4-5).

The simulation engine of the event–driven algorithm is presented in Figure 5.2. It continu-

ously takes the first event from the event list (i.e., the one with the lowest timestamp) and

delivers it to the target unit. This process continues until a time out moment is reached

or no further events have occurred. The most important task of the event-driven engine is

to allow an asynchronous processing of the events, while preserving the time order of the

events. Doing this, makes the parallelization of the simulation possible, because it permits

events to be processed by different processors, while the time order is ensured (Mohraz et

al., 1997; Jahnke et al., 1999). The most common procedure for achieving this goal is to main-

tain a global ordered list of events and whenever a new spike is generated, it is inserted in

order in the list. Alternative methods have been proposed, mainly by creating and updating

several lists instead of one, in order to reduce the excessive increase of a global list length

(Mattia and Del Giudice, 1999; Claverol et al., 2002). In Section 5.2.2 it is presented our

solution to this problem.

Evaluation of performances

The event-driven algorithm presented above leads to a significant decrease in the number

of operations required computing the network activity during a training cycle. By using the

efficient version of the activation function ACT Spike2 in Algorithm 5, the simulation of the

network activity in a time period � requires a number of operations:

�)� �
�

/�
� � �� � ( � ��� � � ����+ ���0�(-��� (5.5)

Here, /� represents the time resolution used in the generation of noisy delays and input

signals (i.e., note that is different from �� step). The first term represents the computational

effort employed by the integration of all units that receive spikes at a certain moment of

the simulation (lines 7-12, Algorithm 5). Note that it scales with ��. Second term is the

computational effort for the spike distribution (lines 14-17, Algorithm 5). Compared to the

previous versions, this algorithm brings an additional computational effort required by the

insertion in order of the new spikes in the event list (line 18, Algorithm 5). The length of the

list scales with �'/� � � �� � (.
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Figure 5.2: Event-driven simulation engine. At �� the spike list (- contains events sorted in
a chronological order. The engine takes the first spike in the list (i.e., the oldest) and delivers
it to the target unit. This integrates its activity and possibly, emits a spike. The emitting unit
computes the delays and creates the corresponding spike structures that are further inserted
in order in (-. The process is repeated at time �� with the new configuration of the spike
list.

One can see that compared with Algorithm 4 (Eq 5.4) the number of operations on Algo-

rithm 5 is reduced by two factors. First, in each time bin only a percent � of the total number

of units in the network are computed. This causes a decrease in the number of operations

in the performance critical part that concerns the integration of units activities, by a factor

of ��. Second, the occurrence of the integration time instants is not fixed to a time clock,

but is given by the time resolution /� and the network activity �. The number of operations

in Equation 5.5 can be further decreased in two ways. Firstly, by decreasing the percent of

spikes which are computed in a time slice and secondly, by increasing the /� value. Both

issues are discussed in Section 5.2.2.

In order to compare the performance of the event-driven and time-driven policy, the Al-

gorithms 4 and 5 have been implemented to train a pulsed self-organizing network with

plastic lateral synapses. Note that, in the remainder of this chapter, the continuous time Al-

gorithm 4 implemented with the activation function ACT Spike1 will be used as the basic-

line measure. The network architecture and the learning procedure are described in detail in

Section 6.1. In a nutshell, the organization process consists in the training a self-organizing
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Figure 5.3: Computational times per training cycle for the event and time driven algorithms,
for two network sizes N = 256, 576 units.

feature map of spiking neurons with a Mexican–Hat shape of lateral connectivity, to encode

�� directions of movement. Two networks have been used, of dimensions � � ��� and

� � ��� units. The size of the test maps was limited by the low dimension of the set of

input patterns (i.e., ��x�
 patterns) which would cause the failure of the self-organization

process in larger maps (see Section 6.1).

In a self–organization process, the lateral feedback system is used as a basic mechanism

to modify over time the form of the emergent activity pattern. Given an untrained map,

the neural activity starts out spreading over a large part of the network. That is in our

case, up to 30�-50� of the network. In a few hundred iterations of the learning procedure,

the network response to one stimulus converges to a stable activity bubble that includes

a relatively small set of firing units. It becomes evident that an event-driven algorithm

can benefit from the localization of the network activity, by updating units only within the

active area. In contrast, a continuous time procedure computes the entire network activity

in a time-stepped fashion.

Figure 5.3 shows the computational times per training cycle when the Algorithms 4 and

5 are used for the task described above. Results illustrate the good scaling of the event-

driven algorithm with the simulation time, when the level of activity in the network (i.e.,

� value) decreases. In opposite, the time spent in the synchronous simulation (first two

graphics in Figure 5.3) scales poorly with the reduction in the network activity, but it is

strongly correlated with the network dimension. The scaling of event-driven algorithm is
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Figure 5.4: Scaling of the event-driven algorithm with the change in the network activity.
Computational times per cycle are presented for first 1000 training steps, when activity de-
creases from 100 HZ (on first 100 steps) to 33 Hz at the end.

better illustrated with Figure 5.4. Note that the network activity decreases from �

 Hz on

the first �

 cycles to �
 Hz after �


 cycles.

These results suggest that the event-driven algorithm represents for a self-organization pro-

cess with spiking neurons, a more efficient simulation framework than the time-driven ap-

proach. Time-efficiency represents a crucial issue in the simulation of self-organizing net-

works. That is, because the mapping accuracy of a Kohonen network depends upon the

dimension of the training sample and the number of learning steps performed (Kohonen,

1995). Similarly, the simulation time of a pulsed SOM can increase significantly, unless time-

efficient strategies are employed.

5.2.2 Optimization of the event–driven algorithm

On Figure 5.3 (left upper side) one notes that the event-driven algorithm applied to the

training of the larger network (N= ��� units) performs more poorly than the continuous ap-

proach. This behavior is recorded during the first hundred learning cycles when the network

exhibits neural activity with frequency up to �

 Hz. The inefficiency of the event-driven

approach in the conditions of high neural activity arises from a poor management of the

spike–event list. The main factor is represented by the insertion operation that scales with

the number of events in the list. The observation about the limitations of the event-driven

strategy is consistent with those of other authors (Schoenauer et al., 1998; Mattia and Del
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Giudice, 2000). They have suggested that an event-driven simulation is suitable only for

spiking neural networks with low activity. Most generally, the real neurons fire at low fre-

quencies, however it is also common that they exhibit bursts of spikes with a high frequency

of oscillation (Kandel et al., 2000). Therefore, we need to be able to simulate this type of neu-

ral behavior, without a tremendous increase of the simulation time. This section proposes

an event-driven algorithm that scales well with the increase in the network activity.

In this section, two mechanisms are proposed for the efficient simulation of networks that

exhibit activity patterns with high frequencies. Both of them address the most time-expensive

process in the event-driven policy, namely the management of the event list.

Multiple spikes. A straightforward implementation of an asynchronous algorithm gener-

ates for �� firing neurons with ( synapses per neuron a maximum number of �� � ( action

potentials in each time slice (Equation 5.5). Our idea was that, instead of creating a distinct

event for each spike, to accumulate in a single structure all presynaptic spikes that would

reach the target unit at the same time moment and to deliver them together. We define

the concept of a #$+���+ ���� , which is a data structure that stores in a list, all synaptic

weights # that deliver a spike to a certain neuron � at the time moment �. A similar concept

was previously formulated by Schoenauer et al. (1998) and defined as weight caching.

By implementing the multiple spike concept, the overall computational load per time slice

reduces by �'#. This means that we have fewer spikes to integrate less to distribute and

less to insert in the spike list. In the most favorable scenario, # can equal (. Consequently,

the time of the simulation scales well with the increase in the network activity. On the worst

case, # can represent just a low percentage from (. In this case, the method does not bring

a significant improvement on the time performance of the algorithm. The main parameters

which affect the value of # are: the topology of local connections and the time resolution

used in the generation of input signals and delay values /�. A possible trade-off might be to

use a large time resolution (e.g., /� � � ms). This will increase the probability of spikes to be

delivered at the same time, hence it will favor their aggregation in multiple spikes and will

decrease the length of the event list.

The ordered-insertion problem. The use of multiple spikes for the aggregation of pulses to

be delivered at the same time to a target unit is aimed at reducing the length of the event

list. However, there are cases when trying to aggregate spikes does not make any difference

and there is no significant reduction of the length of the list. This faces us with the problem

of how large dynamic data structures can be managed efficiently. It was mentioned above,
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that the most expensive operation in the management of the event structure is represented

by the ordered insertion (line 18 in Algorithm 5). That is, because the complexity of this

operation scales with the length of the list. As the list grows (i.e., in the range of �
� events

for a frequency of �

 Hz), so does the search time required by the ordered insertion. A basic

improvement, which results in speeding the simulation up to four times, can be achieved if

the list is searched selectively from the start or from the end, depending on the new spike

time stamp.

Several implementations of event-driven strategies for the simulation of pulsed neural net-

works have been developed in recent years (Watts, 1994; Mattia and Del Giudice, 2000;

Claverol et al., 2002; Delorme and Thorpe, in press). Perhaps one of the most efficient (and

ingenious) solutions for the management of the event structure was proposed in Mattia and

Del Giudice (2000). Authors suggested the use of not only one event list, but of several FIFO

queues, each of them associated to a fixed axonal delay value. The neural model accounts for

the existence of a discrete set 1 of ordered delays for spike transmission (e.g., a maximum

number of �� delays have been implemented). Synapses of the neurons in the network are

organized in matrix-structured layers, each layer corresponding to one delay value. When

an event is generated it is not inserted in a single global list, but it is directed to the synaptic

queue corresponding to its transmission delay. Because in the same queue all spikes share

the same transmission delay, the spike generated first will be the oldest (top of the queue)

and the latest generated spike will be the last in the queue (end of the queue). Accordingly,

the data structure needs no sorting operation and the insertion is done in )��� complexity.

However, the picture is completely different when a neural model accounts for noisy delays.

That is, because a recently generated spike with an associated high transmission delay must

be delivered to the target unit later than an older spike that has a short synaptic delay. In

this case, the time stamp of an event is dependent on both the spike time and the noisy

delay. The algorithm proposed by Mattia and Del Giudice (2000) has a very low complexity

when used for learning with plastic synapses and theoretically, the solution suggested is

very ingenious and highly efficient. Its drawback is that it employs a crucial simplification

of the neural model, consisting in the limitation of the synaptic delay to a fixed number of

values.

Formal neural models apply several simplifications to the detailed structure of the biological

neuron (see Section 4.2.1), but noise in the synaptic transmission is preserved by almost all

simplified models (Gerstner, 1999; Mass, 1999). This is, because noisy delays are an essential
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factor in the optimal tuning of the neural response to the stimulus attributes, hence they

play a crucial role in the development of neural selectivity and in the self-organization of the

cortex (see Section 6.1). We consider that keeping the noisy delays is a must for a simplified

neural model and the solution proposed in Mattia and Del Giudice is acceptable only for a

limited set of applications, where noisiness can be discarded.

Quick sorting of an unordered pool. Our solution to an efficient management of the spike

list structure consists in eliminating the insertion overhead. Instead of performing the or-

dered insertion, we just add the spike to an unordered pool of spikes, an operation of com-

plexity )���. Since the events have to be processed in chronological order, at constant time

intervals, the simulation engine stops processing spikes, and selects from the pool and sorts

chronologically, those events which will be computed in the next interval. The time window

during which processing of events takes place continuously is referred to as �
��
�
. It is

similar to the safe window concept used in parallel simulations to guarantee the temporal

correctness of the algorithm (Ferscha and Tripathi, 1994). Figure 5.5 shows the simulation

engine of the algorithm.

The selection of spikes to be processed in the next time window is performed using a quick

sort algorithm. Most importantly, the sorting algorithm is run only over a small percentage 2

from the elements in the pool, namely those whose time mark is within the next processing

interval (see Figure 5.5). This is realized by setting the first pivot point of the quick sort

procedure to � � �
��
�
. By doing this, after the first iteration of the algorithm the pool is

”shuffled” and only the elements with a time stamp less than ���
��
�
 are sorted (lines 23-

27 in Algorithm 6). As a consequence, instead of dealing with the total number of insertion

operations proportional to

�)� �
�

/�
� � �� � ( � ����

�

/�
� � �� � (� (5.6)

we have an insertion operation of complexity )��� and an additional computational effort

to sort the pool given by

�)� �
�

�
��
�

� 2 ��� � ����2 ����� (5.7)

where �� is the number of spikes in the pool. The value of the interval �
��
�
 is choose

by considering two aspects. On one hand, the value of this variable is set so that it ensures

a correct chronological processing of the spike-events from the pool. To obtain this, each

processing interval cannot be larger than the minimum synaptic transmission delay. As the

value �
��
�
 grows, so does the risk of integrating more recent spikes before older ones.
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Figure 5.5: The event-driven simulation engine based on the quick-sort strategy of an un-
ordered pool. Whenever the spike list (- becomes null, that is, when all spikes in the current
time window �
��
�
 have been processed, the quick-sort algorithm is run. Note that it is
run only upon a fraction of the elements in the spikes pool, namely those with a time stamp
between the current time � and ���
��
�
. Sorted spikes are stored in (- and are processed
by the simulation engine (i.e., integration, propagation, output). Any new spikes generated
are simply added at the end of the pool.

On the other hand, too fine a value of �
��
�
 increases the chances that the sort algorithm

will fail. That is, if the sorting interval is too small, the algorithm does not find not even

a single event or it returns a very small number of events with time stamps within this

interval (see lines 23-27 in Algorithm 6). Moreover, a large time window is desirable be-

cause it decreases the number of times when sorting is required. The implementation of

the quick-sorting strategy and of the multiple spike concept, give the final version of the

PROPAGATE Spike function in Algorithm 6.

The implementation of Algorithm 6 for the simulation of a number of cognitive models

indicates that it represents an efficient solution for networks with high frequencies of neural

activity and when the synaptic delays have equally distributed values. In our simulations

(Sections 6.1, 6.2), the �
��
�
 interval was set to � ms and /� to 
�� ms. This means that

the insertion operation complexity in Equation 5.6 is �
 times higher in comparison with the

sorting effort from Equation 5.7. Moreover, the value of the percent � is given by the number
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Algorithm 6 PROPAGATE Spike - quick sorting strategy
Require: current pattern number �, simulation time ��, time out ����

1: 	� � �� �set the time clock�
2: �- � �$+� (- � 0 ����-� �SL points to the head of the spike pool�
3: while 	� � ���� do �while current time less than time out�
4: if (- = �$+ � 	� 	 time(next subpattern(p)) then
5: apply inputs (next subpattern(p)) �call lines 3-10 Algorithm 4�
6: end if
7:  = first event((-)
8: 	� �  ���# �simulation time becomes the time of the current spike �
9: if not nul event( ) then

10: � �  ���.� � �get the spike’s target unit�
11: �	�� = ACT Spike(�� 	�) �integrate activation of unit ��
12: 
$�� = OUT Spike(�	��)
13: (- = remove first event( � (-)
14: if 
$�� then �propagate spike to postsynaptic nodes�
15: for all k � �� do �all nodes postsynaptic to ��
16: ��� = noisy delay(length(���))
17:  � = multiple spike(�� 	�� ��� ) �create or update a multiple spike�
18: �- = add event pool( �� �-)
19: end for
20: insert (�, LearningNodes) �synapses of firing units are subject to learning�
21: end if
22: else if �- 
� nil then �if SL is nul and spike pool PL is not empty�
23: ������ � 	�� �
��
�
 �get the next processing window�
24: �- �	 �� .� � ������ �set the first pivot point for quick sorting�
25: while (- � �$+ � �
��
�
 � ��# 
$� do
26: (- = sort pool��-� ������� �sort spikes with time less than �������
27: ������ � 	�� �
��
�
 �increase the window�
28: end while
29: end if
30: end while

of spikes to be sorted within a � ms interval, hence it is low compared to the total number of

spikes in the pool. Together, these factors make the sorting computational effort to remain

low and almost independent of the pool size, ��.

Moreover, we can complete now the implementation of the activation function ACT Spike2

(Section 5.1.3) by specifying the way a neuron integrates the presynaptic spikes. It was

pointed out there, that without a receiver-oriented connectivity each spike must store the

complete information needed for the computation of the weighted postsynaptic potentials

by the target unit. In the event-driven Algorithm 6, the Activation function is called when-

ever a neuron receives a multiple spike. At that very moment, when the spike reaches the
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unit, the postsynaptic potential (�(� ) is set to the maximum value (e.g., � in SpikeNNS).

Therefore, no other computations are needed, excepting to multiply the PSP by the connec-

tion weight, which is stored in the multiple spike structure.

With these clarifications, lines �� � in function ACT Spike2 become:

1: for all ��
�� � MultipleSpikeStructure do

2: �(� ���� � �

3: ��(����� � � �(� ���� � ��
��

4: end for

Evaluation

We conclude the description of the event-driven algorithm with the evaluation of its time-

efficiency. First, we want to illustrate the gradual improvement in the performance of a

basic event-driven implementation when each of the above methods is incorporated. We

compare the version presented in Algorithm 4 with three improved algorithms: (1) the im-

plementation of multiple-spikes at a time resolution /� � 
��ms; (2) multiple-spikes at time

resolution /� � �ms; and (3) the quick-sort algorithm with multiple-spikes at /� � 
��ms

(i.e., Algorithm 6). The performances of the algorithms were compared with respect to how

well each of them realize the management of the spike-events structure. Our measure of

the computational effort is defined by the time required to compute (e.g., integrate activi-

ties, output spikes, propagate pulses and handle the spike-list structure) a certain number

of units, in this case �� � �


 units.

The findings presented in Figure 5.6 reveal a gradual increase in the algorithm performance

of up to �
 times when the above strategies are added one by one to the basic event-driven

implementation. Note that if the multiple spike strategy is applied to a series of events

generated with a fine time resolution (i.e., 
�� ms) the probability of spikes to accumulate

is low. Consequently, it leads to an average improvement in performance by �
�. Only

when the time resolution is increased to � ms does the method prove really efficient. The

best performing algorithm consists of a combination of multiple spike strategy and quick-

sorting of the unordered pool. It shows an almost linear scaling with the increase in the

network activity and most importantly, this is obtained at a time resolution of 
�� ms. The

complexity of Algorithm 6 is shown in Table 5.1.

In the second part of the evaluation, we intend to compare the time performance of Algo-
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Figure 5.6: Computation times for updating 1000 units vs. levels of network activity, when
different event handling methods are applied. The network activity is measured as the
average number of spikes in one ms divided by the total number of neurons for N=576.

rithm � with the times reported in Mattia and Del Giudice (2000) (i.e., further referred in the

text as the layered-delay algorithm). This comparison is facilitated by the fact that both al-

gorithms have been applied to spike-driven learning processes of similar complexities. The

quick-sorting strategy has been implemented to apply learning in a self-organization fea-

ture map of spiking neurons, with plastic excitatory and inhibitory lateral synapses (see the

description of the learning procedure in Section 6.1). The learning procedure was run only

for a small number of cycles while the network activity was high (i.e., �

 Hz).

Results reported for the layered-delay algorithm are the time per neuron needed to complete

the simulation of one second of neural time in networks with different sizes (i.e., up to

��k units). The algorithm is applied for learning with integrate-and-fire neurons, when

the spiking frequencies are maintained constant. Thus, the excitatory neurons frequency is

"� � � Hz and inhibitory neurons frequency "� � � Hz. The connectivity rate, when the

network size is varied, represents a constant percent �
� from the total number of units.

To obtain a similar measure of the computational effort required to integrate one neuron

activity in our algorithm we proceed as follows. First, we calculate the number of neurons

which fire during �s of simulated time. This is given by �
 � �� �"� ��� �"�, where ��� ��

are the number of excitatory, and respectively inhibitory neurons, in a network of a given

size. Next, we run the Algorithm � on a set of networks with similar sizes and connectivities

112



Chapter 5: SpikeNNS simulator: design and implementation

(1) Continuous time v1. �) � �
��
�� � ( � ��"� �� ��, with a � �
� ��

(2) Continuous time v2 �) � �
��
�� � ( � � � �

(3) Event driven - basic �) � �
��
�� � ( � � � ��� � � ���� �

��
�� � ( � ���

(4) Event driven - optimal �) � �
��
�� � �

�
� � � ��� �� � �

�������
� 2 ��� � ����2 �����

with # � ��� (�� 2 � �
�
�� 
���� and �� �
�
��
�� � �

�
� �

Table 5.1: Computational effort for four algorithms, estimated by the number of operations
required in the implementation of the performance critical parts: (1) continuous time al-
gorithm (Algorithm 4, Section 5.2.1) with activation function version 1 (Algorithm 1, Sec-
tion 5.1.2); (2) continuous time algorithm (Algorithm 4) with improved activation function
version 2 (Algorithm 3, Section 5.1.3); (3) basic event-driven algorithm (Algorithm 5, Sec-
tion 5.2.1); (4) time-efficient version of the event driven algorithm, with multiple spikes and
quick-sorting of the pool (Algorithm 6, Section 5.2.2).

as the one tested in Mattia and Del Giudice (2000). During training of these networks, we

compute the time per neuron required for the simulation of all operations entailed by the

firing of same number of neurons, �
 . The reason for this measure of evaluation is that the

two algorithms run on networks that show activities with significantly different frequen-

cies, hence the computational efforts per time slice cannot be compared. The results of the

comparison are presented in Table 5.2.

The main strength of the Mattia and Del Giudice algorithm resides in the layered structure of

� up to �� delay values. This was designed particularly for computational simplicity, even

if it was done at the expense of the biological plausibility. Moreover, the simulation time

per neuron obtained with the layered-delay algorithm (Table 5.2) is based on an average

spiking frequency of ��� Hz. This means that in one second of simulation time, each neuron

fires less than three times. In the case of the quick-sorting algorithm, time per neuron was

computed when a number of �
 neurons fired at a frequency of �

 Hz. The difference in

the frequencies is essential when comparing the algorithms. For instance, in the case of a

network with � � �� units a spiking frequency of �

 Hz generates a pool of events of

the order of ��
� 


 elements. Hence, our algorithm manages to keep the simulation time

approximately twice as long as the layered-delay algorithm with �
 times higher frequency.

And most importantly, it still manages to preserve the essentials of neural behavior (i.e.,
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N N
 Layered delays QuickSort pool
(1k units) (1k units) (ms) (ms)

2.5 Hz 100 Hz
0.5 1.0 0.45 1.0
1 2.4 0.8 2.5
2 5.0 1.4 3.1
3 7.0 2 4.3
4 9.5 2.7 5.2
5 12.0 3.2 6.3

Table 5.2: Execution times per neuron vs. size of the network N, when N
 neurons fire. For
the layered–delays algorithm we refer to the Mattia and Del Giudice (2000) algorithm. Note
that the average firing rate in the layered delays simulation is 2.5 Hz, whereas the execution
times for the Quick-Sorting algorithm are recorded for a neural activity of approx. �

 Hz.

noisy synaptic transmission).

5.2.3 Learning framework

So far in this section, we described the implementation of the PROPAGATE ACT function

that is used to apply and propagate a time-coded input pattern through the network. The

final task is to implement the training function LEARN Spike that specifies how the network

learns a complete set of input patterns.

The training procedure consists of a loop that executes a series of actions. It takes a new

input pattern from the set (lines 2, 12 Algorithm 7) and it applies it to the network. It propa-

gates the network activity until a reference time ��# �$� is reached or until there are no more

spikes to process (see PROPAGATE ACT in Section 5.2.1). Then, it updates the synapses of

those neurons selected for learning during the training step (i.e., the firing neurons). Learn-

ing is applied with a frequency -
 , that can be � or any number up to the training set di-

mension. Before the beginning of a new training step, the network activity can be reset or

preserved, as a function of the parameter �
 . In the simulations described in chapter 6, the

network activity was reset during training after the presentation of each input pattern, and

it was preserved in the testing phase.

The Learning Function (line 7 in Algorithm 7) can implement any type of synaptic adap-

tation rule. Several rules for learning with spiking neural networks have been described
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Algorithm 7 LEARN Spike
Require: pattern set � , learning frequency -


1: setup simulation times (�	����� ����� ����� 	�)
2: 	� = first pattern�� � �get first pattern�
3: while not nul (	�) do �for all input patterns�
4: PROPAGATE ACT(	�)
5: if �$#� .�	���-
 � 
 then �time to apply learning �
6: for all � � LearningNodes do
7: Learning Function(�) �apply learning to the synapses of neuron � �
8: end for
9: end if

10: reset network activity(�
 ) �reset or keep neurons activities�
11: update simulation times (����� ����� 	�)
12: 	� = next pattern�� � �get next pattern�
13: end while

in Section 4.4. At the present, the existent learning rules in SpikeNNS implement a self-

organization learning framework used for the simulation of the cognitive models described

in Sections 6.1 and 6.2. Hebbian and anti-Hebbian plasticity for excitatory synapses and a

type of correlation-based learning for the inhibitory synapses have been also implemented

(see Section 6.2). Future work is aimed at extending the number of learning functions with

supervised rules and other forms of spike-timing dependent synaptic plasticity.

5.3 Description of simulator features

5.3.1 Stuttgart Neural Network Simulator

The scope of the modeling work carried out in this thesis is to provide an illustration of

how a cognitive phenomena, such as visuomotor mapping or movement planning, can be

grounded at the neural level. In Section 4.3 it was argued that a simple, rather than a de-

tailed neural model, is more appropriate for our modeling goals. We have described the

implementation of a neural model, namely the Spike Response Model (Gerstner, 1999). The

reasons we did not use a preexisting simulator for pulsed neural networks and choose to

build our own implementation are twofold. Firstly, the most powerful and user-friendly

simulators for spiking neurons existent today are based on detailed models of the neuron

structure: Neuron (Hines and Carnevale, 1995), GENESIS (Bower and Beeman, 1998). This

makes them less suitable for the simulation of large-scale cognitive phenomena. Secondly,
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freely available simulators of simplified neural models are restricted as applicability, since

they have been created for specific modeling issues and run on certain hardware platforms.

For instance, INFERNET (Sougné, 1999) is a simulation framework created particularly to

explore cognitive binding and inference, and which works on Macintosh machines.

Therefore, it is rather difficult to adapt a simulation environment created to support the de-

velopment of a family of models in one domain to another domain study. What seemed to be

the best solution was to use a general-purpose simulator that can provide good visualization

facilities and the possibility of code re-use. It was decided to take a simulation environment

designed for the traditional, continuous valued neurons and to extend it to deal with the

more biologically realistic spiking neurons. The simulator chosen was the Stuttgart Neural

Network Simulator (available at http://www-ra.informatik.uni-tuebingen.de/SNNS/).

Stuttgart Neural Network Simulator (SNNS) is a software simulator, currently available for

Unix and Windows platforms, developed since 1990 at the Institute for Parallel and Dis-

tributed High Performance Systems (IPVR) at the University of Stuttgart (Zell et al., 1992).

It supports arbitrary network topologies, it is highly configurable and includes a relatively

large number of learning procedures, starting with backpropagation algorithms, ART maps,

Kohonen networks and ending up with time-delay and recurrent networks. The graphical

user interface (Figure 5.7) offers a 2D/3D representation of the neural networks and allows

an user-friendly control of the kernel during the simulation run. The sources of the im-

plementation in C for Unix platform are freely available, and can be easily extended with

user-defined libraries. SNNS is a widely distributed neural network simulator and its use

and extension is technically supported by the SNNS team and by the SNNS discussion mail-

ing list.

The advantages of using the SNNS framework for the development of our pulsed neural net-

work libraries were twofold. First, we benefit from the substantial functionality of the simu-

lator and second, we can make the modeling extensions publicly available to the substantial

SNNS user community. However, there are also disadvantages when adapting a simulator

built for processing with rate coding neurons for the simulation of spiking neurons behav-

ior. Some of the aspects of how an efficient simulation of pulsed neural network differs from

a traditional neural network simulation have been emphasized in Section 5.2.1. The main

design considerations regard the type of the connectivity scheme (i.e., sender-oriented vs.

receiver-oriented) and the type of simulation engine (i.e., synchronous vs. asynchronous).

The first implementation of the Spike Response Model using the SNNS data structures in-
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Figure 5.7: User interface (XGUI) of the Stuttgart Neural Network Simulator.

dicated that the original kernel libraries are not very appropriate for the simulation of spik-

ing neurons (see Sections 5.1.2, 5.2.1). Consequently, we had to re-engineer a number of

functions in the SNNS kernel and create dedicated data structures suited to the specifics of

computing with spiking neurons. Another aspect that we had to consider in the simulator

design, was the compatibility of the spiking neural functions with the SNNS own functions.

Thus, the names, parameters, return codes or functionality of the new procedures have been

designed in accord with SNNS conventions. At some point, this aspect constrained the way

functions were built.

The extension of the SNNS environment to support simulations with spiking neurons was

named SpikeNNS. This extension needed the re-engineering of some parts of the kernel,

as well as the addition of dedicated functions, in order to allow computation with spiking

neurons. The library of spiking neurons functions consists of: the implementation of the

Spike Response Model (SRM), the event-driven simulation engine, functions for the appli-

cation of time-coded input patterns, routines for learning with spiking neurons. Additional

functions are required for initialization, testing and gathering firing statistics. The sources of

SpikeNNS simulator will be freely available at http://cortex.cs.may.ie/tools/SpikeNNS.html.
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5.3.2 Setting up a simulation with SpikeNNS

The process of setting up a simulation in SpikeNNS involves a number of steps:

� First, the specification of a prototype of the basic computational unit is required. The

parameters of the neural model are specified from the SNNS configuration file. They

are discussed below.

� Next, the connectivity of the network is created. This can be done either using the

graphical interface available in SNNS for building networks, or by generating it with

SpikeNNS functions. Parameters for the configuration of three types of a connectivity

are given in Table 5.4 and described below.

� Finally, an initialization procedure is run to set the specific values of the spiking neu-

rons simulation.

Initialization of neural parameters

The behavior of a spiking neuron is described by Equations 4.2, 4.3, and 4.5 (Section 4.3)

and depends on a set of parameters, which can be defined by the user. These parameters are

enumerated in Table 5.3 and have been described in detail in Section 4.3. The initialization

of these values and other spike-specific parameters is done with the procedure INIT Spike.

At initialization, each hidden neuron in the network is assigned a noisy threshold computed

by the formula:

� � #�
�������� (5.8)

where � is a function that returns a random number uniformly distributed between 
 and

��. When a spike is emitted on a synapse, a noisy delay is generated as a function of the

synapse length +:

� � + �3����� (5.9)

where + is given by the Euclidean distance between the connected neurons and 3 is a Gaus-

sian distribution with mean 
 and standard deviation ��. The firing time of a neuron is

affected by noise with Gaussian distribution with mean 
 and �� standard deviation, ac-

cording with the formula:

�

�

� �
 �3����� (5.10)
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Neural parameters

#�
� - maximum neural threshold
�� - threshold spread value

�� - membrane time constant

$� 4 - refractory period parameters

"� - number of spikes stored / neuron

�� - noise factor in the generation of synaptic delays

�� - noise in the firing time value

�� - percent of excitatory neurons

	�� 	� - connectivity rates of excitatory and inhibitory neurons

�	 - random factor in connections number

Table 5.3: The configurable parameters of the neural model.

At initialization, each unit is probabilistically defined as either excitatory or inhibitory, so

that an average number �� of excitatory neurons will exist in the network. If the users

chooses to implement a sparse connectivity pattern (see Section 5.3.2), than the number of

lateral connections per neuron is specified by the formula

	 � � �� �3��	�� (5.11)

where � is the total number of neurons in the network and � � 	� � 	� is the rate of con-

nectivity per excitatory, or inhibitory neuron respectively. The Gaussian distribution has the

mean 
 and standard deviation �	.

Creation of a connectivity pattern

SNNS is a simulation environment designed for the modeling of classical neural networks.

Hence, it does not address in particular, the problem of creating biologically realistic con-

nectivity patterns. Most readily, the network topology can be set up to full connectivity

between any two layers or between any clusters of units, defined by their coordinates �
� 5�

in the network. By contrast, the topologies of biologically inspired networks usually are

based on sparse probabilistic connections or regular synaptic patterns (see below). That is,

because in the cerebral cortex each neuron is coupled to a reduced number of other neurons,

in a non-random fashion (Braitenberg and Schuz, 1998). Cortical synapses within the same

layer most commonly connect cells with similar neural response, while projections between
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Type Connectivity parameters

Sparse � - target layer
intra-layer #�
�, �� - maximum weight and deviance value

connectivity /�� /� - connectivity decay parameters

Topographical �, � - source and target layer

inter-layers #�
�, �� - maximum weight and deviance value

projections -� - sets the size of projection for topographical connections

�� - sets on the bidirectional connectivity between � and �

Receptive �, � - input and target layer

afferent #�
�, �� - maximum weight and deviance value

fields ����� - delay and deviance value for input connections
�
 - sets the radius of the receptive field

# - sets the value of the magnification factor

Table 5.4: The configurable parameters for three types of connectivity: intra–layer, inter–
layers, and receptive fields.

layers convey information from one stage to another in a topographical manner (Kandel et

al., 2000; see also Section 2.2.4).

SpikeNNS offers a number of configurable functions, which can be used to generate three

types of connectivity patterns, independently of the neural model used (see parameters in

Table 5.4):

� Intra-layer sparse connectivity, with a short-range distribution of the excitatory connec-

tions and long-range distribution of inhibitory synapses. There is experimental evi-

dence that a Mexican-Hat shape of connectivity with inhibition surrounding excita-

tion is biologically plausible and it favors the process of lateral and afferent weights

self-organization (see Section 2.2.4).

� Inter-layers topographical projections. In the cerebral cortex sets of neurons which con-

vey information from one processing stage to another are usually projecting in a topo-

graphical manner (see the retina-LGN-V1 projections, Kandel et al., 2000).

� Afferent receptive fields, which convey signals from a distinct area of the input space to

a cortical (e.g., hidden) neuron (Kandel et al., 2000).

In SpikeNNS, connections are defined by their weight � and the synaptic length + that de-
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termines the value of the spike transmission delay (see Equation 5.9). The synapse weight

is computed by the formula:

� � #�
� ������� (5.12)

where � is a function that returns a random number uniformly distributed between 
 and

��.

Sparse connectivity. To create within a target layer �, a sparse, centered-surround connec-

tivity pattern, a number of steps are involved (see parameters in Table 5.4). First, for every

neuron � in �, the probability of being connected with any other neuron � in the same layer

is computed. The probability to create a synapse depends on the sign of the source neuron

(i.e., excitatory or inhibitory neuron), the distance to the target neuron and the connectivity

decay parameter. Thus, an excitatory synapse from neuron � to neuron � has the creation

probability of:

� �  
�������� �

�� � (5.13)

where ��$�� $� � is the Euclidean distance between the units and /� is a constant which con-

trols how fast the connectivity decays with the distance in the layer (formula adapted after

Ström, 1997). An inhibitory connection is added with a probability of

� � ��  
���

������� � � (5.14)

After the probabilities of all possible output connections of the neuron � have been gener-

ated, these values are sorted in a descending order in an array. The array is then parsed

starting from the highest values and an output synapse is created if the associated proba-

bility is less than a random number .. The value of this number is uniformly distributed

within an interval, whose limits are set differently, depending on the sign of the synapse

. � ��� ��� � ����� 4���. Synapses are added to the network topology until the number of

connections per neuron 	 (Equation 5.11) is reached.

Figure 5.8 shows for two target units at locations (4,12) and (13,6) in the network, the presy-

naptic units in the layer. The excitatory units (shown in blue) are distributed (probabilis-

tically) within an area of dimension four surrounding the target unit. The long-range in-

hibitory synapses are received from units located at distances greater then four, up to the

network margins. The percent of excitatory units in the network is of 	
�. Parameters used

in the generation of this pattern, were /� � �, /� � ���. Random values were generated us-

ing ��� � � � and ����� 4� � 
�� for excitatory synapses, and ��� � � 
�� and ����� 4� � 
��

for inhibitory synapses.
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Figure 5.8: Sparse probabilistic connectivity pattern in SpikeNNS, which a short-range dis-
tribution of excitation and long-range distribution of inhibition. For two neurons, at loca-
tions (4,12) and (13,6) the input units are shown. The blue signs designate excitatory presy-
naptic units. The inhibitory units are shown in red (or magenta). The connectivity decay
parameter is / � �.

Topographical projections. In SpikeNNS, topographical projections can be created only be-

tween hidden layers (see parameters in Table 5.4). Each neuron in the source layer � projects

in the target layer � in a sub-array of units of size -�. Note that current implementation of

the function works only for dimensions of the target layer that are equals or larger than the

source layer dimension. If �� parameter is set on (i..e, �� � �), than reciprocal projections

between layers �� � are created.

Receptive fields. Receptive fields can be created from an input layer � to any hidden layer

� (see Table 5.4 for parameters). In such a connectivity scheme, a hidden unit of coordinates

�
� 5� receives stimulation from a square area of size �
 that is centered in the input layer

(approximately) at ( 
�
�
� ��

�
�. The value of the magnification factor # gives the ratio of

hidden units per one input unit. That is, because the hidden layer has a higher dimension

then that of the input layer and this allows the formation of several receptive fields for each

location in the input array.

Implementation of the functions described above is independent of the type of the neural

model specified (i.e., rate-coding or spiking neuron). Hence, they can be used to create net-

work topologies, when any activation or output functions from SNNS are employed. Note

that each of the above functions deletes any previously existing connectivity between the

layers given as parameters. Therefore, they cannot be used in conjunction with the SNNS

graphical interface for setting intra- or inter-layer connectivity. All parameters for the ini-
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tialization of the neural model the setting of the connectivity patterns and for learning can

specified in the SNNS configuration file. The SNNS control panel allows on-line modifica-

tion of at most five parameters. When a particular function is loaded, such as ACT Spike,

LEARN Spike or INIT Spike, all its parameters are initialized from the configuration file.

Only the first five values are displayed and can be updated through the control panel.

5.3.3 Learning parameters

As noted above, the parameters for learning are set in the configuration file and initialized

during the call of the function INIT Spike. Training of a pulsed neural network in SpikeNNS

is performed using Algorithm 6 (Section 5.2.2), which represents our most efficient version

of an event-driven strategy. The general learning framework was described in Section 5.2.3.

Three timing parameters have to be set for the LEARN Spike function: an absolute value

of the simulation start time �	����, an arbitrary value of the integration time moment ����,

and the time out limit ����, until which the network activity is computed during a training

step. For a description of these parameters significance see Section 4.3.4. Other parameters

which have to be set for the training of a pulsed neural network concerns: the look-ahead

value for the event-driven algorithm �
��
�
, the flag �
 , which tells if the network activity

is reset after each pattern propagation, and the learning frequency -
 (see description of

parameters in Section 5.2.3).

During training and testing of a network, a number of statistics with respect to the neurons

firing behavior can be collected and saved in a results file. This information concerns mainly

the spike timings for each neuron in the hidden layers and the discharge rates during each

input pattern application. The extension of the SNNS simulator to support modeling of

spiking neural networks is only at its beginning and more work will be required in order to

provide an integrated new version of SNNS.
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Chapter 6

Models and results

During visually guided reaching for objects, our brain transforms a visual stimulus on the

retina into a finely coordinated motor act. This process employs the activity of neural popu-

lations distributed along several areas in parietal and frontal cortex (Section 3.2). An ubiqui-

tous feature of neurons in the parieto–frontal region is their broad selectivity to movement

direction (Sections 2.1.2). This directional tuning of the neuronal responses has two conse-

quences. First, the generation of motor output is based on a population coding of movement

direction (Sections 2.1.3). Second, co–activation of neurons with similar tuning properties

can establish a mechanism for the transfer of visual information into the motor command

required for reaching.

In this chapter, we address two basic questions on the cortical control of the direction of

movement. First, we investigate by means of computational modeling the mechanisms

whereby motor neurons develop directional selectivity. Section 1 describes the formation

of a directional motor map based on a self–organizing process involving spiking neurons

and using input patterns analogous to proprioceptive feedback. The neural responses of

individual units are characterized and the resulting population code is analyzed and com-

pared to experimental findings of motor coding of movement.

Second, the self–organized motor map is re-used for the simulation of a developmental pro-

cess of eye–hand coordination acquisition. The model proposed in Section 2 explores the

means by which visual directional activity can be correctly used to guide the generation of

the desired motor action. Visual and motor network alignment is discussed in the light of

the connectivity pattern organization and of the individual unit’s contribution to the map-
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ping process.

6.1 Self-organization of neurons in motor cortex for coding the di-
rection of movement

Modeling of the cortical coding of motion direction is relevant to understanding how con-

trol of movement is implemented in the central nervous system. It also represents a crucial

obstacle to be overcome if the goal is the understanding–for–reproducing of the mechanisms

involved in visual guidance of reaching movements. Given the importance of the subject,

it is surprising that only a very small number of studies have been aimed so far at explor-

ing the organization of directional motor maps (see Sections 2.2.3, 2.3). Previous work on

coding of movement trajectories by neural population vectors (Lukashin and Georgopou-

los, 1994) and on visuomotor mapping of direction (Burnod et al., 1992) represents only a

starting point in modeling the organization of motor networks. What is still needed is a self–

organizing neural network model to investigate how directional selectivity and population

coding emerge in the motor cortex.

In this section such a neural network model is proposed. The simulation work is grounded

in the experimental data showing that directional tuning is a prominent feature of motor

neurons (Georgopoulos et al., 1984). The main findings of the experimental studies are: (1)

neurons in the motor cortex are broadly tuned to preferred directions of movement (Sec-

tion 2.1.2); (2) motion in a certain direction is determined by the activity of a large popula-

tion of neurons; (3) the coordinated action of neurons can be characterized by using a neural

population vector, which proves to be a good predictor of motion direction (Section 2.1.3);

(4) particular directions are multiply represented in the motor cortex and cover a directional

continuum; (5) the strength of the connection between two neurons tends to be negatively

correlated with the angle between their preferred directions (Section 2.2.3).

A common approach in building neural networks that code motion directionality is to assign

neurons with preferred directions from a directional continuum (see Section 2.3.2). This is

done without considering the development of the neural selectivity or of the way neurons

relate with each other as a consequence of having certain preferences. Instead of taking

this view, we are interested in investigating the processes whereby directional selectivity

emerges in a neural network. We want to explore how and why individual neurons learn to

respond maximally for a particular movement direction, and not for another. Furthermore,
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Figure 6.1: The motor system consists of a two–dimensional self–organizing feature map of
spiking neurons. The input layer is fully connected to the output map. This has a heteroge-
neous composition of �� � �
� excitatory neurons and �� � �
� inhibitory neurons. The
connectivity has a Mexican–Hat profile, represented by short-range excitatory synapses and
long–range inhibition. The neural and connectivity parameters are shown in Table 6.1.

we want to discover the factors that influence the development of preferred attributes and

the locus of acquisition of directional selectivity.

With respect to the representation of movement at the network level, the goal is to explore

the possibility of obtaining in a stable self–organizing map, a distributed coding of a set

of movement directions. The computational demand for the organizational process is to

ensure the generation of distinct directional commands.

The model and the learning scenario proposed here are inspired by the simulation work on

the self-organization of visual feature maps (Section 2.2.2, 2.3.1). This procedural transfer

is grounded in the general idea that developmental principles described for sensory areas

may reflect general mechanisms of cortical computation (Sections 2.2.3, 2.3). If this model

proves successful in simulating the formation of directional motor maps, than it provides

evidence for the generality of the mechanisms employed, while also helping to develop new

hypothesis on the functional principles of the motor cortex.

6.1.1 Structure of the model

The motor system architecture is presented in Figure 6.1. It consists of a two dimensional

heterogeneous self–organizing map with �� excitatory and �� inhibitory spiking neurons.

Each neuron in the output map is fully connected to the input layer and is linked by proba-

bilistic connections with other competitive neurons. The input unit activity is characterized
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Model parameters
#�
� � �, �� � 
�� - threshold parameters
�� � � - membrane time constant
$ � 
�	, 4 � ��� - refractory period parameters
"� � �
 - number of spikes stored / neuron
�� � � - input delay value
�� � 
�� - delay spread parameter
�� � 
�� - firing time noise
�� � 
��
 - percent of excitation
	� � �
�, 	� � ��� - rates of connectivities
�	 � ��� - randomness on connections number
/� � �, /� � ��� - connectivity decay parameters
#�
 �� � 
��, #�
 �� � 
�� - afferent and lateral weights parameters
�� � 
�� - weight spread parameter

Table 6.1: Neural and connectivity parameters for the self–organization of the motor direc-
tional map. The neural model is described by Equations 4.2, 4.3, 4.5 in Section 4.3. Detailed
explanations of the connectivity parameters have been given in Section 5.3.2.

by a simple identity transfer function. The activation function of the output neurons is given

by the membrane potential Equations 4.2 in SRM� model (Section 4.3). The neural response

of an output unit evolves over time by combining the afferent signals with lateral excitatory

and inhibitory feedback. The parameters used for setting the neural model are shown in

Table 6.1 and their meanings have been described in Sections 4.3 and 5.3.2.

The self–organizing feature map (SOFM) has proven highly effective in modeling the forma-

tion of orientation and directional maps in visual cortex (Sections 2.2, 2.3). The basic prin-

ciple of an SOFM is represented by the topology–preserving mapping of the input space

to clusters of nodes in the output map. Learning of the afferent weights is assisted by a

lateral feedback system, which leads to a cooperative organization of afferent and lateral

connections (for the role of lateral connections in the development of cortical maps see also

Section 2.2.4). In a network with a center–surround connectivity pattern (i.e., Mexican–Hat

profile) the repeated exchange of localized excitation and long–range inhibition has an es-

sential role in focusing the network activity, by enhancing the center and suppressing the

activity at a remove from it.

It is also important to point at the sparseness of the connections between the competitive

neurons. This is an important property of the network architecture, which is in agreement
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with biological data showing that in the cerebral cortex each neuron is coupled to a reduced

number of other neurons (Braitenberg and Schuz, 1998). In our network, the probability

of a connection existing between two excitatory neurons � and � decays with the increase

in the Euclidean distance ���� ��. Conversely, for two inhibitory neurons the probability of

connection increases with the distance between them. How fast the connectivity decays is

given by the parameters /� and /�. Details on the procedure used to create the probabilistic

connectivity pattern have been presented in Section 5.3.2. For this simulation, parameters

are tuned such as each excitatory neuron connects probabilistically with neighbors within

distance � � �, whilst an inhibitory neuron acts upon a fraction of cells placed from distance

� � � to the margins of the network.

6.1.2 Learning procedure

Normally, learning in a self–organizing map consists of three steps. First, the activation

of the hidden layer is computed with respect to the input vector. Following this, a best–

matching unit is selected and designated as winner of the learning step. Finally, the weight

vectors are adapted for all units in the winner neighborhood. One way to modify the

weights is as a function of the cells discharge rates, after the network has reached a sta-

ble firing state (Section 4.4). When computing with spiking neurons, a more appropriate

alternative is to apply learning as a function of timing of single firing events (Section 2.2.5).

In the algorithm proposed here, the winner is randomly selected from the subpopulation

of units that fire the quickest in one simulation step. After choosing a winner, learning is

applied as follows. The afferent weights of a competitive neuron � are adapted in such a way

as to maximize their similarity with the current input pattern �. A measure of the similar-

ity is the difference between the postsynaptic potential !�� that encodes the input stimulus

and the connection weight ��� . Furthermore, a spatial and a temporal neighborhood of the

winner are created, such that only the neurons inside the �� area and which have fired up

until a reference time ���� are subject to learning. The learning rule is adapted from Ruf and

Schmitt (1998) and is given by the formula:

���� � � �!�� � ����
���� � ��

����
� any � � �� (6.1)
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Figure 6.2: Modification of the synaptic weight ��� is applied as a function of the param-
eters: �� - time of the presynaptic spike, �� - time of the postsynaptic spike, � - delay of
transmission, and �� - time membrane constant.

with

!�� �

���
��
 
��� 	

��
�� if � � �� � �� � � 	 
�


� if � � 
�
(6.2)

In equations above, � is the learning rate, �� the membrane time constant, !�� is the post-

synaptic potential from presynaptic unit �, and �� and �� are the times of the first spikes of

neurons �, respectively � (see Figure 6.2). Note that the temporal neighborhood � ��� � ��

is larger for the winning neurons and decreases for units that fire later. Hence, the largest

change in the afferent weights occurs in the case of the winning neuron.

A similar rule is applied for learning in the lateral weights. The synaptic efficacy of a lateral

connection is modified depending on the activity of the connected neurons and upon the

arrival time of the presynaptic spike. The weight of an excitatory synapse is updated only if

both neurons � and � are in ��, if they both have fired and if the presynaptic spike has been

emitted before the postsynaptic spike. For example, if the postsynaptic neuron � fired at

��, than for all excitatory presynaptic neurons � that fired before �� and fall inside a certain

spatial neighborhood, the connection strength ��� is potentiated. Note that strengthening of

excitatory connections predominates over synaptic weakening. The later occurs only when

the weight exceeds the postsynaptic potential value. Weights are also kept from excessive

increase through normalization.

The learning algorithm for the inhibitory synapses was adapted after the rules proposed by

Levy and Desmond (1985). If a presynaptic activity occurs before the firing of the postsy-

naptic neuron than we have a loss of the strength of inhibitory synapse with the value given

130



Chapter 6: Models and results

by Equations 6.1 and 6.2, where �� � �� � � � 
 and ��� �� '� 
. If we have a presynaptic

activity paired with a postsynaptic inactivity than we have a potentiation of the inhibitory

synapse with

���� � � ���!�� � $� � �����
���� � ��

����
� any � � �� and �� � 
 (6.3)

where $� is the activation of the postsynaptic silent node, averaged over the ���� period.

With the advancement of the simulation time, the neural response becomes more selec-

tive, hence more neurons are silent for other directions than the preferred direction. In this

case, the rules above tend to favor an excessive increase of the inhibitory synapses, which is

avoided through normalization by a fixed � factor.

6.1.3 Training patterns

In the theoretical introduction of this work it was suggested that a significant advance in the

modeling of motor cortex development will be made by identifying the input signals that

drive the organization process (Section 2.2.3). Hence, the milestone of our simulation work

was the formation of a training set, which encodes the directional information needed for

learning and moreover, is biologically plausible.

A source of inspiration in creating the input patterns was represented by the study of Lin

et al. (1997) on neural trajectory computation (Section 2.3.2). Their work investigates how

directional information can be extracted from the firing rates of motor cortex neurons by us-

ing a self–organizing feature map (SOFM). The SOFM is used to establish a correspondence

between the discharge firing patterns of a number of � � 	� neurons computed at different

moments in time, and the resulting direction of movement. Besides reading the directional

information encoded, the self–organizing map allows a visualization of the similarity rela-

tionships between the input vectors. Thus, it indicates that neural discharge vectors for sim-

ilar directions share a higher degree of similarity than vectors coding for opposite directions.

This is a consequence of the fact that for similar directions, neurons fire at approximately the

same rates.

Our hypothesis was that input vectors, which code directional information in the way de-

scribed above, may be used for the self–organization of a directional motor map. The main

assumption we made was that input vectors, which represent opposite directions, are highly

dissimilar. Conversely, topologically close to each other directions are encoded by vectors
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(a) Coding of directions (b) Directions of motion

Figure 6.3: (a) Coding of three movement directions by the input vectors. The red units
are referred to as principal units, since they code relevant information within a pattern.
The rest of the units transmit noisy values. Orthogonal directions such as direction 1 and
direction 2, are encoded by different subsets of input units. Direction 12 is topologically
located between the two directions. Hence, it is encoded by a subset of units shared with the
other two directions’ representations. (b) Directions of movement which the self-organizing
map learns to stably represent.

with similar values. A recent review of the literature on muscular control of movement has

provided compelling support for our hypothesis. It indicated that the training inputs of

the type we have used can be provided by proprioceptive signals arriving from the mus-

cles involved in a movement (Theeuwen et al., 1996; Bolhuis et al., 1998). This is, because

movements in opposite directions entrain activation of different sets of muscles (i.e., ago-

nist/antagonist) that in turn provide feedback signals with distinct representations. An im-

portant future direction of our work is to use experimental data collected from arm muscles

during directional movements to train the motor network (see also Section 7.2.2).

For simplicity we have defined only �� directions of movement as represented in Figure 6.3b.

Each direction is encoded by an input vector of dimension ��. The input values represent

the firing times of the units (see Section 4.3.4). The values are generated in such a way

that directions which form an angle larger than �
Æ are coded by vectors that are almost

orthogonal (i.e., have a low degree of similarity). Examples are: North and East, or NNEast

and SSWest. Directions that are situated inside an arc circle of �
Æ are encoded by input

vectors with higher degrees of similarities.
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(a) Dissimilarity measure
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Figure 6.4: (a). Dissimilarity values computed between input patterns representing four
orthogonal directions: North, East, South, West. (b). Similarity values between directions
situated within a arc circle of �
�: North, North-West, West-North, West. The similarity (or
dissimilarity) measure is given by the Euclidian distance between the vectorial representa-
tions of the patterns.

The degree of similarity between two vectors is given by the number of units shared in the

representation (Figure 6.3a). For example, if direction North (direction 1 in Figure 6.3a ) is

encoded by the firing times of four input units $�, than a direction similar with N, such as

NNE (direction 12 in figure) will be encoded by a set of units $�, so that $� � $� � � � �.

Conversely, an opposite direction such as South (direction 2 in figure) is encoded by a set of

units $	, with $	 � $� � ��+. Note that information on each pattern is distributed over all

�� input units. Thus, a number of four up to five principal units encode the training infor-

mation provided by the input pattern and the rest of units code noisy values. The similarity

and dissimilarity values between four directions of movement are shown in Figure 6.4. The

similarity between two patterns is computed by calculating the Euclidian distance between

the input values on each of the 16 pairs of neurons in the vectors.

After creating a prototype pattern for each of the �� directions of movement we generate

a training set of ��x�
 patterns by adding noise to each value in the original vector by the

formula: $ � $� � ��#�� where ��#� is a random number generated uniformly in the

interval �
� 
��� for a principal unit, and �
� �� for the other units. A small training set was

sufficient for our simulation and it favored multiple representations in the network of each

directional pattern.
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Figure 6.5: Phases of learning in a pulsed neural network: apply a time-coded input pattern
starting from �	����; integrate competitive units activity beginning with the time ����; propa-
gate activity through the output layer until ����; and update connections weights according
with the learning rules. See also Section 5.2 for more details on the implementation of this
scenario.

6.1.4 Simulation

The main phases of a simulation with spiking neural networks and time-coded input pat-

terns have been described in detail in Section 5.2. Figure 6.5 summarizes these stages as

input pattern application, propagation of the network activity and adaptation of learning

synapses. One learning step lasts for ���� � �
 ms and is divided into the following stages

(Figure 6.5). Input patterns are applied starting with the moment �	���� � 
. First integration

of network activity is done at ���� � � ms. Network activity is propagated into the output

layer and neurons are allowed to fire for approximately �
 ms, until ���� is reached. After-

wards, modifiable synapses are adapted according with the learning rule, network activity

is reset and the process continues with another input pattern.

For this simulation, the weights of afferent and lateral connections are initialized around the

midpoint of the input pattern values (e.g., 
��). The learning rate starts with a value of 
��

and is decreased by a fixed percentage � � 
���� �. An initial radius of �� is set to � and

is reduced over time to the minimum value of �. Training was performed for 1000 cycles,

equivalent to applying 240,000 directional sequences. After a coarse organization of the net-

work weights occurred, its characteristics were analyzed, as presented below. The network

training was discontinued for two reasons. First, learning with spiking neurons is faster that

with the traditional, rate-coding model, hence self-organization may occur earlier (see also
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Farkaš and Miikkulainen, 1999). Second, activity in a self–organizing map decreases rather

fast with the advance of the simulation time. This is due to the increase of selectivity in

the neural response. Consequently, the advancement of network training would favor the

formation of narrow tuning responses in a small set of neurons, associated with a complete

silence in the others.

6.1.5 Results

Self-organization of afferent weights

Training of a pulsed neural network start with neurons being equally responsive to all input

patterns. This leads initially, to the activation of the entire network for the presentation

of any input pattern. With the advance of simulation time, the number of neurons that

respond to a particular input vector slowly decreases, as selectivity of the neural response

increases. In the end, in the trained self–organized map, only a small number of patches

of activity occur for each directional command. These are usually organized around the

winners of the corresponding direction. Hence, as a result of the self–organization process

aimed at increasing the similarity between input patterns and weight vectors (Eq. 6.1), the

afferent weights of a neuron that wins mostly for a particular direction resemble closely the

corresponding input vector.

The labeling of the map is performed by marking each output unit with the inputs for which

it is the most representative. Figure 6.6 shows the neurons’ preferred directions labeled

according with their winning behaviors while a test is run. The trained network was tested

with the same pattern set used for learning. This was presented for a number of �
 times,

while the winning behavior of each neuron was recorded. If for instance, neuron � wins

mostly for a particular input pattern, than it is labeled with the corresponding direction. For

the correspondence between directions and numbering labels see Figure 6.3.

The trained network bears a set of features, which have been induced by the self-organizing

network property of a topology-preserving mapping. That is, the similarity relationships

from the input space are translated into neighborhood relations in the output map. We may

say that the network found a way to map directions according to their similarity relations

(see similarity measures in Figure 6.4b). It resulted in most similar patterns being mapped

to neighboring units. Note the succession of neurons labeled with �� ��� �� ��� �� ��� �� �� in

135



Chapter 6: Models and results

Figure 6.6: Self–organizing map labeled with the winning neurons’ preferred directions. The
preferred direction is given by the input pattern for which the unit is the best representative,
that is, for which it wins most of the times after training has ended.

Figure 6.6.

A relatively high percentage of neurons developed selectivity for the input vectors, while

approximately ��� of the total number of neurons did not respond directly to the presented

patterns. With respect to individual neurons response, we note that 	�� of the winners

win for more than one direction of movement (not shown in the picture). Conversely, we

also found about ��� of winner neurons whose first spike is constantly correlated with

only one direction of movement. Together, these observations suggest that even if the most

probable directional information is not read out from the timing of single spikes (i.e., due to

a high number of broadly tuned winners), the second type of unit may also play a role in the

representation of direction (see more in Sections 6.1.6 and in final discussions Section 7.1.3).

Figure 6.7 illustrates the self-organization of the afferent weights for seven units placed at

consecutive locations in the output map. The rough pattern of the initial afferent weights

(left) evolved during training into a smooth profile (right figure), which peaks over different

subsets of input units corresponding to the pattern best learned by that output node. For

instance, output unit � is unselective, node � is broadly tuned to direction North (encoded
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Figure 6.7: The afferent weights of seven neurons in the output map. (a) Initial random
weights with an average value of 
���. (b) As self–organization progresses, the weights
organize into smooth hill–shaped profiles. Each weight vector has a peak (up to 
�� value)
for the input units which code the pattern best learned.

in first � input units), node � is broadly tuned to direction NEast (input units � to �) and last

� nodes are more sharply tuned to direction East (inputs � to 	).

Rate coding of directional information

Figure 6.6 shows the calibration of the output map with respect to the winning behavior

of neurons. That is, it reflects the organization of afferent connection weights. Apart from

this type of labeling, normally performed for a SOM, we want to characterize the selectivity

of each neuron as a function of its discharge rate during a time interval. Thus, for each of

the �� directions we run a validation procedure consisting of the following: while �
 input

patterns are applied with a frequency of �
 Hz, the activity of the network is allowed to

oscillate and the firing rates of neurons are recorded. The preferred direction of the unit is

given by the input, which evokes the highest discharge rate.

The network labeled according with the firing rate behavior is presented in Figure 6.8. Only

neurons with tuning levels above �
� are represented and the tuning value (normalized)

is indicated by the length of the thick line. Note that compared to Figure 6.6 the number

of unselective neurons has decreased to approximately ��� of the total number of neurons.

The existence of approximately ��� neurons which are not directionally selective has also

been described experimentally in the motor cortex (Georgopoulos et al., 1984).
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Figure 6.8: Self–organizing map labeled with the neurons’ preferred directions, computed
as the movement direction for which a neuron’s discharge rate is highest. The level of neu-
ral tuning (normalized) is represented by the thick line. Two types of neural behavior are
shown: winning neurons (in black) and lateral neurons (in blue). See the text for details on
the functions of these neural behaviors. In the left side, an assembly of neurons is delimited,
composed of winning and lateral neurons whose collective firing encodes the movement
direction towards North. The gray arrows indicate the excitatory connections from the neu-
rons which fire first (winners) to the neurons which fire later (lateral units).

The increase in the number of selective neurons compared to the previous calibration sug-

gests that neurons other than winners have also developed directional preference. Thus,

the analysis of the discharge rate behaviors revealed a set of neurons (drawn in blue in

Figure 6.8) that had remained invisible during the first calibration of the map. These neu-

rons have small values on the afferent weights and never won during the testing procedure

for any of the directions involved. However, when recording their firing behavior in time

it occurs that they spike later than the winners and their discharge rates are tuned to the

direction of movement.

We refer to the latter units as lateral neurons, due to the fact that their spiking activity is

mainly caused by the integration of the lateral excitation in addition to the afferent input.

The lateral synapses from the winners (which fire quickest) to the later firing neurons are

illustrated for a small assembly of neurons in the left upper corner of Figure 6.8. Because
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neither the lateral nor the afferent simulation solely can cause firing, the lateral neurons

need to integrate both sources of excitation before they emit a spike. This constraint leads to

a more selective directional response. Their tuning curves are less broadly than those of the

winner neurons, with a mean width of �
Æ. Later in this chapter, a third category of neurons

is described that need to integrate three types of inputs in order to spike.

The joint activation of the two types of neurons give rise to a sort of collaborative cell as-

sembly (Reilly, 2001), which enhances the strength of excitation between neurons tuned to

similar directions of movement and suppresses the response in opposite directions. On the

left side of Figure 6.8 the approximate boundaries of the cell assembly coding for movement

direction North are indicated. The most important effect of collaborative cells assembly for-

mation is the emergence of a population coding (see Section 6.1.5). Both the emergence of

collaboration between neurons and the formation of a population code are supported by the

horizontal feedback system. That is why, the organization of the lateral weights deserves a

particular analysis.

Self–organization of lateral weights

The formation of the directional map shown in Figure 6.8 was driven by two principles.

First, the SOM property to preserve the topological relations between input patterns led

to the formation of an ordered representation of the directional space. Second, the lateral

connectivity pattern with a Mexican-hat profile played an essential role in shaping the net-

work activity. Thus, it favored the formation of distributed, stable representations for each

direction of movement.

The lateral connection strengths are not static, but they evolve together with the afferents.

For each firing neuron the lateral weights are adapted by a Hebbian learning rule (Equa-

tion 6.1) according to how well the neuron’s activity correlates with the activities of other

neurons. As the afferent weights organize into a smooth profile (see Figure 6.7), lateral corre-

lations between neurons fall off with distance and become stronger only between neighbors

with similar directional selectivity. Thus, the excitatory weights between neurons which

develop preferences to opposite directions decrease through normalization and end up be-

ing pruned. Conversely, inhibition (decorrelation) increases between neurons that become

selective to orthogonal input patterns.

To extract the common features of the lateral synaptic strengths we calculated the mean
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Figure 6.9: The dependence of the mean value of the lateral connection strength on the an-
gle between the preferred directions of the neurons in a pair. The mean value of the weight
was calculated by averaging over all weights, which connect neurons, whose preferred di-
rections form the same angle.

value of the connection weight as a function of the angle between the preferred directions

of two neurons in a pair. Figure 6.9 shows the mean values calculated considering all hori-

zontal synapses in the network. We found that the mean connection strength is negatively

correlated with the difference between preferred directions of the neurons in a pair. Our

findings are in good agreement with the experimental estimation of lateral synaptic weights

between motor neurons, as being a function of the difference between preferred directions

(see Section 2.2.3).

Different profiles of afferent and horizontal strength vectors develop in winners as opposed

to lateral neurons. One has to remember that during learning the change in all synaptic

weights is constantly scaled by the difference between the time of the neuron’s first spike

and a fixed arbitrary time out (see Equation 6.1). Hence, the later the lateral neurons fire,

the smaller the adaptation of their afferent weights. Instead, their firing is triggered by the

receipt of a lateral spike, therefore, the more the lateral connections will be strengthened.

Conversely, because in winner units the first spike is caused by the afferent stimulation,

they develop an opposite profile to the weight vector, characterized by strong afferent con-

nections and small values of the lateral weights.

The strength of inhibitory connections also evolves over time. Inhibition increases whenever

the firing of a presynaptic inhibitory neuron is correlated with postsynaptic inactivity (see
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Section 6.1.2). Because inhibitory synapses run over large distances, the firing of an assem-

bly of neurons for one direction of movement will result in lateral inhibition spread all over

the network. Consequently, neurons belonging to assemblies that are not involved in cod-

ing the current direction receive a high proportion of inhibition. Because lateral neurons rely

mainly on lateral excitation to fire, they end up by remaining silent. Instead, winner neu-

ron activity is due to afferent stimulation, hence they fire (even accidentally) in more cases

and for more directions than the lateral neurons. Therefore, the responses of lateral neurons

are more suppressed (inhibited) than those of the winners. Consequently, it enhances their

narrow tuning to the input stimuli (see Section 6.1.5).

It is important to explore with future models the influence on the lateral connection organi-

zation of variants of learning procedure and of different rates of connectivity. For instance,

a learning algorithm based on the timings of a spike series would allow the winner neurons

to integrate the effects of lateral feedback. This would cause a significant strengthening of

the entire lateral connectivity system. The increase in the number of lateral neurons can be

obtained by implementing higher connectivity rates, for instance excitatory neurons fully

connected with neighbors within a certain area. A strong recurrent feedback is essential

for the generation of neural oscillations in the network that have a role in maintaining the

movement representation in time (see also Section 7.1.3).

Population coding

To this point, results have been presented in terms of selectivity of individual cells to the di-

rection of movement. With few exceptions, our findings indicate that neurons (both winners

and laterals) are broadly tuned to several directions of movement. Moreover, the command

in each movement direction elicits in the output map the activity of an entire population of

neurons (i.e., the collaborative cell assembly). These observations suggest two ideas. Firstly,

directional information cannot be read out from the individual response of the majority of

neurons (e.g., 	
�). Secondly, it is possible that directional information is represented in

the collective activity of subsets of neurons broadly tuned to similar directions. The later

hypothesis is illustrated in Figure 6.10(a) where the joint activity of neurons with various

preferrences, coding one direction of movement, is shown. That is, more than �
 neurons

are firing at different rates while representing direction North.

In order to test the population coding hypothesis we computed for each of the �� direc-
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(a) Population coding of direction N (b) Population vectors for 12 directions

Figure 6.10: (a). Discharge rates (normalized) of the population of neurons coding direction
North. Each bar represents the contribution of single neurons and its orientation corre-
sponds to the preferred direction of the neuron. (b) Population vectors for �� directions of
movement. Each vector is a resultant of individual neuron contributions (only the neural
population for direction N is shown).

tions of movement the neural vectors, by using the formula (adapted after Lukashin and

Georgopoulos, 1994):

�
��� �
�

����� � 	
��1�� ����� �
�

����� � ����1�� (6.4)

where �� is the discharge rate of the neuron � during a testing interval of 600 ms. In Equa-

tion 6.4 we consider that the preferred direction of the neuron �1 � is given by its discharge

behavior, as described in Section 6.1.5 (see also Figure 6.8). The populations vectors yielded

by the vectorial summation �
��� are shown in Figure 6.10(b). Note that the neural vectors

resulted point very closely to the desired directions of movement.

The population code is an effect of the distributed representation of direction, caused by

the broad selectivity of output map cells. Each cell’s activity is highest for a movement

in a particular direction and decreases with movements further away from that direction.

Figure 6.11 shows the discharge rates (normalized) of four neurons for different directions of

movement. In the absence of a directional continuum, we cannot present an exact estimation

of the tuning curves. However, we can approximate the shape and the width of the neural

response. Neurons have unimodal tuning curves that differ from cells with the width of

the curve of ��
Æ (neuron � responds to maximum � directions of movement) to cells with a
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Figure 6.11: Discharge rates (normalized) of four directional selective neurons plotted as a
function of the movement directions. The preferred directions of neurons of the neurons are
located at approximately �
Æ from each other. Note that neurons show different shapes and
widths of the tuning curves.

curve width of �
Æ (not shown in figure). The median of the curve width is at �
Æ. A given

neuron participates in coding of movements in directions which form an angle no larger

that �
Æ with its preferred direction. Since directions forming an angle larger than �
Æ are

encoded by orthogonal input vectors, the participation of the neuron in coding movement

in such directions is due mainly to the successive propagation of excitation in the lateral

feedback system.

The width of the neural tuning found in our model is in partial agreement with the experi-

mental findings of Amirikian and Georgopoulos (2000), which describe real neurons’ tuning

curves with a half-width from �
 to �
Æ and the median ��Æ. Their results indicate that mo-

tor cortical cells are more sharply tuned than previously thought (i.e., do not fit the cosine

function). Our simulation findings point in the same direction (note that in our case the av-

erage of the midpoint of the curve is at ��Æ), but more modeling work is needed for a better

fit of the results to the experimental data.

To this end, we can try to put everything together into a hypothetical scenario of how the

map response evolves in time from the moment it is presented with a move command. First,

winner neurons are activated very rapidly. By doing this, the first spikes occurring in the

network offer a quick motor output available to initiate the movement (e.g, if this is desired).

But, since winners’ tuning to the intended direction of movement is rather broad, this initial

specification of the direction is very rough. In our case it restricts movement in a sector of
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�
Æ around the desired direction. One can also compute the instantaneous population code

contributed by the activated winners, but this information is not more accurate than the

readout of single spike timings from a few sharply tuned winning neurons.

Following the winners’ activation, the lateral neurons get involved due to the horizontal

excitation spread. During successive propagations of activation in the neural assembly, the

lateral neurons contribute to creating a steady state for the network activity. This state repre-

sents the attractor of the desired direction and has a completely distinct position in the space

for each of the learned directions. At these immediately successive stages of movement ini-

tiation (or movement preparation) the directional information can be read out correctly to

drive the movement accurately to the target.

6.1.6 Discussion

In this section, a neural network model was proposed for the emergence of directional se-

lectivity in motor cortex, based on acquired experience (i.e., proprioceptive feedback). The

self–organized network exhibits properties that are consistent with the experimental find-

ings on biological motor control. Furthermore, we believe that the modeling process can

provide us with valuable knowledge about the organization and developmental principles

of the motor cortex. The main conclusions are summarized as follows.

First, the model shows spontaneous emergence of a feature map during unsupervised learn-

ing and starting from random afferent and lateral connections. The self–organization of the

network leads to a stable, ordered representation of �� directions of movement. Most of the

neurons in the self–organized network develop directional selectivity. All directionally se-

lective neurons have a preferred direction, computed as the movement direction for which

the neuron’s discharge rate is highest. Furthermore, directionally selective units can be di-

vided into two categories. Winners are units whose afferent weights are tuned to the input

vectors and this is reflected in a rapid response to the movement command. Lateral neurons

are units whose firing is determined by the integration of lateral excitation with afferent

stimulation.

With respect to winner neurons’ directional tuning, we found that the vast majority of them

are broadly tuned to several directions of movement. However, in the case of a small percent

of winner neurons (about ��� of all units) directional information is accurately encoded in

the timing of the first spike. It is noteworthy, that the original experiments of Georgopoulos
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et al. (1982) also described the existence in the motor area of fast responding neurons, which

are significantly tuned to one direction of movement. It is possible that the central nervous

system uses this directional information for the initiation of fast movements, in a similar way

the visual brain uses single spikes to take rapid decisions (Thorpe et al., 2001; see further

discussion in Section 7.1.1).

To summarize these findings, we believe that the main outcome of our model is the emer-

gence of directional selectivity in a motor self–organizing map of spiking neurons. Even

if our model is a very simplified image of cortical motor computations and needs further

refinements, we believe it represents a progress in the simulation of motor cortex organiza-

tion. It was motivated by the absence in the motor control field of computational studies of

how motor directional selectivity emerges (see Section 2.3).

The results obtained emphasize the advantages of modeling the self-organization process, as

opposed to assigning neurons with preferred attributes (Lukashin and Georgopoulos, 1994).

Thus, in our model, neurons can effectively ’gain’ a preferred direction, as a function of the

neural parameters, noise and location within the network. It shows that preferred attributes

are not developed solely based on the neural features but also as function of its interactions

with the network. Conversely, directional knowledge is encoded at the network level, that

is in the horizontal connectivity, as well as in single neurons responses. We believe that

by modeling the developmental processes, we can help to reveal the unknown functional

principles of motor cortex organization.

An important issue concerns the function of the lateral connectivity system in the formation

of the directional map. The role of horizontal connections in the organization of sensory

feature maps have been emphasized recently by many studies on the visual cortex (see

Section 2.2.2). However, much less is known about the profile and the function of lateral

connectivity in the motor cortex. Our results indicate that neurons that develop similar di-

rectional selectivity become functionally correlated. In the trained map it was found that

the strength of connection between neurons in a pair becomes negatively correlated with

the difference between their preferred directions. This is an important modeling finding,

which is in complete agreement with experimental estimations and previous simulation

work (Georgopoulos et al., 1993; Lukashin and Georgopoulos, 1994. See further discussion

in Section 7.1.2).

As a result of the distributed representation in the network of the directional information,

we can observe the emergence in the model of a population coding. This result is even
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more interesting, as it was obtained with a self–organization process based on the timing

of single spike events. Note that during training any information regarding the discharge

rate behavior of neurons was discarded. Furthermore, by its nature the self-organization

mapping focuses upon learning winner neurons. Hence, the emergence of a distributed

representation of direction is determined by the organization of afferent and lateral connec-

tions. Firstly, as the afferent weights of a winner become more similar to an input vector,

the unit increases its sensitivity not only to the best matching input, but also to all similar

inputs (see the similarity measure in Figure 6.4). Secondly, the network response to one di-

rection is amplified by the lateral feedback system, which activates the lateral neurons that

are not directly responsive to the input stimulation. We may conclude that the population

coding is a function of both the properties of the input space and the built–in network’s

constraints which allow the formation of collaborative cell assemblies (see also discussion

in Section 7.1.1).

In our population codes, the individual contributions of single neurons can be summed up

using the population vector scheme (Lukashin and Georgopoulos, 1994). Even if the neural

vectors slightly deviate from the intended direction of movement, the main achievement of

the model is that it is able to provide distinct commands for each direction (Figure 6.10).

This means that the self–organizing map managed, within a distributed representation, to

form stable attractors for each of the directions involved. Future work is aimed at tuning

the neural parameters and the network design constraints in order to increase the accuracy

of where the population vector points.

6.2 Development of visuomotor alignment of directional codes

A fundamental operation of animal brains and robot controllers is the integration of visual

information with motor commands. Visually guided reaching in primates is considered to

involve a series of neuronal events that transform retinal information about target location

into the metrics of arm movement (Section 3.1). Most traditional modeling efforts using neu-

ral networks for robotic motor control have focused upon developing various formalisms

capable of doing the coordinate system transformation (Section 3.1.1). Nevertheless, these

implementations are neither relevant to the biological motor control, nor are they very adap-

tive or capable of learning and development (see Kalaska, 1995). Conversely, it was pointed

out that inspiration could be drawn from the way motor control is realized in living systems.
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Thus, recent behavioral and electrophysiological findings gave rise to a conceptual frame-

work for the understanding, and possibly implementing, the computational mechanisms

underpinning visuomotor coordination (Section 3.2). The work presented is in agreement

with these latter theories.

In this section, an artificial neural network model is proposed to address a basic issue of

visuomotor coordination: what are the computational mechanisms that allow visual in-

formation on the direction of movement to evoke an appropriate motor response in the

same direction? We believe that this operation meets the basic computational demand for

visuomotor mapping and represents a building block of the perception–action cycle (see

Section 3.1.2).

Our approach to the visuomotor coordination problem was inspired by experimental data

showing that neural selectivity to movement direction is a ubiquitous feature of the parieto–

frontal networks involved in reaching (Section 2.1.3). During visual analysis of movement

and at all stages of motor control the activity of a substantial percentage of movement–

related neurons depends upon the direction of movement (i.e., involves direction selective

cells) (Kandel et al., 2000; see also Section 2.1.2). The idea was to use the motion selective

cell as the basic information-processing element from which neural networks capable of vi-

suomotor control are built. Moreover, it is currently believed that visuomotor mapping of

information (including coordinate system transformation) is realized progressively, by the

gradual involvement of several populations of neurons (Section 3.2). We propose that the

correlated activity of motion selective cells in the parieto–frontal areas meets the basic com-

putational demand in the chain of operations required for visually guidance of movement.

The learning algorithm proposed here consists of a sequence of processing steps. First, the

visual perception of a moving stimulus is translated into the firing pattern of directionally

selective visual neurons. Next, this activity is transmitted to the motor areas that are in-

volved in the control of movement direction. Simply, by the correlated firing of visual and

motor neurons with similar neural response, a communication pathway for the directional

information is established. In our simulation, the visual system corresponds to some early

stages of visual information processing (e.g., retina and primary visual cortex). We believe

that an equivalent computational mechanism can operate for the coupling of two or more

networks of directionally selective cells located at any stages along the parieto–frontal net-

works involved in reaching.
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Figure 6.12: Neural architecture for the alignment of visual and motor representations of
direction. The left part represents the visual system, consisting of a retina and a cortical
visual layer. On the right is shown the spiking self–organized motor map trained to encode
�� directions of movement. The visual cortical layer is connected to the motor map through
a synaptic pathway subject to spike–timing dependent plasticity.

6.2.1 Architecture of the model

In order to simulate the computational mechanism described above, we have implemented

a very simple architecture consisting of a visual system connected to a motor map. There

are two input layers and two ’cortical’ layers: the motor area and the visual area. The visual

area is represented by a layer of directionally selective neurons which have receptive fields

from an input, retina–like layer (see description in Section 6.2.2 below). The motor area is a

self-organizing feature map trained to represent �� directions of movement. The organiza-

tion process has been presented in Section6.1. All parameters describing the spiking neural

model (i.e., postsynaptic potential, refractory period, transmission delays) are kept constant

from previous simulation (Section 6.1, Table 6.1).

Each cortical neuron receives afferent connections from one input layer and lateral connec-

tions from other neurons in the same area. The visual cortical layer is fully connected to the

motor map. The implementation of full cortico–cortical connectivity, rather than a coarse to-

pographic ordering is motivated by the topology and the small scale of the networks. Due to

the reduced dimension of the networks one can consider them as being tiny patches of cor-

tical areas, large enough to comprise a complete representation of all features of input space

(i.e., directions) at several positions. Full connectivity is required at this level to ensure that

any population of motor neurons has access to all visual directions of movement.
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In our view, the development of visuomotor coordination is achieved in two phases. During

an initial organizational stage, the motor and visual systems develop independently, neu-

ral selectivity to the directional information. This stage ends up with the formation of two

cortical maps, which stably encode direction of movement. Next developmental stage cor-

responds to the effective coupling of the two systems, which are allowed to interact and to

learn, and eventually to coordinate. Experimental data concerning infants visual develop-

ment indicate a prior emergence of cortical orientation mechanisms, followed at three month

of age by the development of selectivity to motion (Atkinson, 2000). The later enables the

cortical control of eye and hand movements. From this age until the age of � � � months

the cortical mechanisms for reaching (i.e., for eye-hand coordination) are developed. These

observations indicate a possible sequencing of the processes involved in the perception and

control of motion and in the achievement of visuomotor coordination.

The separation of the developmental stages is usually implemented by models of visuomo-

tor coordination, but most commonly the directional maps are obtained by assigning (rather

than developing) preferred directions to the motor (and/or visual) neurons (see Bullock and

Grossberg, 1993; Salinas and Abbott, 1995). An original feature of our visuomotor mapping

model is that it is based on a motor network, which has self–organized to represent direc-

tionality. Hence, it allows natural interactions between neurons and a self–developed way

to encode the direction of movement.

In the next subsections, we focus upon describing the visual coding of movement direc-

tion and we proceed to the modeling of visuomotor coordination development. The reader

should refer to the description of the motor map organization from the Section 6.1.

6.2.2 Visual coding of movement direction

After several decades of research on visual processing of information, it is now well estab-

lished that the cortical analysis of visual space relies on the functioning of a fundamental

neural machinery referred to as the hypercolumn (Section 2.2.2). A hypercolumn represents

a set of columns which are responsive to lines of all orientations from a particular region

in space via both eyes, and to movements in directions orthogonal to the orientation axes

(Kandel et al., 2000). Experimental results have described a precise organization with an

orderly shift in axis of orientation (or direction) from one column to the next (Section 2.2.2).

The formation of orientation and directional selectivity in the visual cortex has been exten-

149



Chapter 6: Models and results

sively modeled using the self-organization paradigm (Kohonen, 1984). Most commonly, di-

rectional selectivity is developed in a map of cells with orientation preferences (Section 2.3.1).

When the self-organized visual map is presented through the retina with a moving stimulus

of a certain orientation, its response is represented by the firing of a certain set of neurons.

These are the cells in the network which receive activation from retinal units located along

the trajectory of the moving stimulus and whose preferred orientations (i.e., directions) are

similar to the stimulus attributes. For an illustration of this process the reader can refer to a

demonstration of how a moving oriented line is processed in a visual feature map (Bednar

and Miikkulainen, in press; http://www.cs.utexas.edu/users/jbednar/sweeping small.html).

Based on these findings, our visual area was implemented with a built–in, basic capacity

of signaling motion direction. We have simulated a hypercolumnar organization based on

directionally tuned neurons. One hypercolumn consists of �x� neurons, each firing for only

one preferred direction and being silent for movements in different directions. Excitatory

lateral synapses connect each neuron with the first order neighbors that have the same pre-

ferred direction.

The cortical map of area �	x�	 is connected to a retinal layer formed from �x� neurons (left

part of Figure 6.12). Each cortical neuron receives input from a fixed-size receptive field

of dimension �x� units. The receptive field of one neuron ��� �� was centered at ��'�� �'��

and the afferent weights were initialized within the range �
��� ��. The magnification factor,

which is the ratio of cortical neurons per retinal neurons, is �. In this way, it allows dif-

ferent receptive fields for each location in the retina (see description of implementation in

Section 5.3.2). The lateral weights were initialized within the range �
��� 
���. Parameters of

the visual model were inspired by the simulations of visual cortex organization performed

by Miikkulainen and colleagues (1996, 1998).

The scale of the hypercolumn dimension and the range of lateral connectivity are clearly

a severe simplification. The built–in capacity for signaling motion was also implemented

for simplicity reasons, as a substitute for the self–organization of the visual map. It was

motivated by our intention to focus rather on the motor network organization and the vi-

suomotor mapping process, than on the organization of a visual directional map. The main

reason was that the formation of visual cortical maps has been extensively modeled com-

pared with that of the motor cortex organization (see Sections 2.3). Nevertheless, this simple

mechanism allows us to investigate the problem of directional information mapping, while

retaining the principal characteristics of visual feature maps (i.e., narrowly tuned directional
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Figure 6.13: The visual input to the model consists of moving bars of a fixed length. There
are �� input patterns, corresponding to bars moving in the �� directions of motion that can
be controlled by the motor network. Movement of a bar through the retina elicits the activity
of the cells located along the direction of motion.

neurons, lateral connections, receptive fields).

The retinal input to the system consists of directionally oriented moving bars of a fixed

length (see Figure 6.13). A set of �� input patterns was created corresponding to the �� di-

rections of movement controlled by the motor network. A bar moving in a certain direction

in the retina determines the retinal neurons located along its pathway, to spike at a fixed

continuous rate. The retinal activation reaches the visual layer after an average delay of �


ms. This value was implemented in accordance with the delay existent in the brain between

retina and primary visual cortex (Thorpe and Gautrais, 1997).

6.2.3 Learning procedure

The learning scenario was inspired by the sensorimotor stages that an infant progresses

through to develop eye–hand coordination. When executing movements during the early

motor–babbling period, infants perceive and learn contingencies between the motor activity

and the visual image of their actions. By doing this, the simultaneous moving and tracking

of the arm can provide the behavioral context for the development of visuomotor coordina-

tion. This becomes functional from about four months onwards, when infants start to make

visually directed arm movements (Atkinson, 2000).

The behavioral framework described above is simulated by using the paradigm of direct
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Figure 6.14: Schema of the training procedure used for the alignment of visual and motor
directional representations. Note that the motor output becomes visual input and the visual
activation is fed back into the motor network. The delay 1� � �

 ms corresponds to the
interval between the time moment when the motor command was issued and the eye starts
seeing the arm movement. The delay 1� � �
 ms represents the time required by the visual
input to get from the retina to the visual network. The third value corresponds to the transfer
delay from visual area to the motor area of 1� � �
 ms.

inverse modeling (Kuperstein, 1988), also known as the motor babbling approach. This has

been discussed in detail in Section 3.3. The general algorithm consists of three steps: (1) a

movement in a random direction is generated, (2) the visual image of the arm moving is

recorded, and (3) the systems learns the correlation between the motor command and the

visual effect of the movement. Most of the previous models of visually guided arm reaching

have been based on different forms of error-correction mechanisms (Ritter et al., 1989; Fiala,

1995; Jordan, 1996). Only recently, it was pointed out that unsupervised learning means can

also lead to an accurate mapping of sensory information (Salinas and Abbott, 1995; Burnod

et al., 1999; see also Section 3.3).

Prior modeling work using correlation-activity associations was based on rate coding neu-

rons, where learning is applied as a function of neural discharge rates (Salinas and Abbott,

1995; Baraduc et al., 1999). In this thesis, the focus is upon learning and computation with

spiking neurons, based on the timing of single firing events (Section 4.2.3, see also Sec-

tion 6.1). We believe this represents a simpler and more adequate framework for the study

of visuomotor mapping through unsupervised means. That is, because detecting temporal

correlations between populations of neurons is a natural computation with spiking neurons

which has no equivalent in the rate coding networks.
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In our algorithm, one learning step consists of a sequence of actions as follows (see Fig-

ure 6.14):

1. The motor input units generate a command for movement in a random direction �.

This input elicits, in the motor map, the activation of the neural assembly involved in the

representation of the direction �. The activity in the motor cortical population is maintained

for a time interval of �

 ms, by the activation of the input command with a constant firing

rate of �
 Hz.

2. Following the movement onset (i.e., at 1� � �

 ms after the motor command is

issued) the retina is presented with a bar moving in direction �. This motion persists until

the end of the learning cycle. After an average delay of 1� � �
 ms, the retinal information

reaches the visual network, where the motion selective cells fire and signal the direction.

3. The cortical visuomotor circuit transmits the neural activity from the visual to the

motor area with a delay of 1� � �
 ms.

4. During a time window of approximately �

 ms while both networks are active,

spike–timing dependent learning is applied to the inter–cortical connections. The connec-

tion between a visual presynaptic neuron � and a motor postsynaptic neuron � is increased

as a function of the time difference between the arrival of the postsynaptic potential �� and

the firing moment of postsynaptic neuron ��:

���� �

���
��
� �
�
��

!�� � ����� if ��� !� 
� 



� otherwise
(6.5)

with

!�� �

���
��
 
���

�����
��

�� if �� � �� 	 
�


� if �� � �� � 
�
(6.6)

In Equation 6.5, � represents the learning rate. The sum is calculated over the decayed

values of postsynaptic potentials !�� coming from the visual neuron �. Each potential is

computed by using the Equation 6.6, at the moment �� when neuron � fires. The summation

represents one way to ensure that the last presynaptic spike that has reached the neuron

� is considered for learning. Difficulty arises from the large delay (1 � �
 ms) between

the visual presynaptic and the motor postsynaptic neurons, correlated with the exponential

decay of the ! values.
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Furthermore, Equation 6.5 states that no modification of the synaptic weight � �� is per-

formed for time steps prior to the arrival of at least one visual spike to the motor neu-

ron. That is, because about half of the time in a learning step, the motor neurons do not

receive any activity coming from the visual network, due to the cumulated delay value

1� � 1� � 1�. Hence, by applying anti–Hebbian learning a rapid pruning of all connec-

tions would occur. Our simplification is meant to speed up the learning process. More

realistic scenarios that lead to similar results can be implemented, with the condition that

the overall time when the visual synapses are active is much larger than the initial time in-

terval when they are silent. In our case, a reduction of the strength of connection occurs only

if the weight value increases over the value of presynaptic spikes effects.

Learning with the above algorithm happens quickly, mainly because the inter–cortical con-

nection weights are initialized with low values between [0, 0.1] and strengthening of synapses

dominates over synaptic weakening. The learning rate � was set to 
��. After 500 cycles a

pattern of strong connections develops from the visual to the motor area, causing the align-

ment of visual and motor neural representations in such a way that permits visual informa-

tion to drive motor movement.

6.2.4 Results

To test the learning of visuomotor mapping of direction, the retina is presented with a bar

moving in a constant direction for a time period of �

 ms, while the activity evoked in

the motor map is recorded. For each of the �� possible direction of motion, this motor

activity is analyzed with respect to the shape of the firing patterns elicited (i.e., neurons

involved) and to the population vector resulting. Figure 6.15a shows the discharge rates

of the motor neurons activated by the visual information coding the movement of a bar in

direction North. An initial qualitative analysis reveals that the firing patterns elicited in the

motor network in the visual condition (i.e., when the motor map is exclusively driven by

the visual stimuli) and in the motor condition (i.e., when a movement command is issued,

see Figure 6.10a) are very similar.

Moreover, if we compute the population vectors (PV) in the visual condition, we find that

the motor PVs driven by visual information point very closely to the desired direction of

movement (Figure 6.15b). This means that the visuomotor system learned how to map

correctly the visual information into directional movement. Alignment of the activity in
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(a) Motor activity in visual condition (b) Motor population vectors in visual condition

Figure 6.15: (a) Population activity occurring in the motor network in visual condition, while
a movement in direction North is perceived. The network activity elicited by the visual
input resembles very closely the population activity which controls movement in the same
direction (see Figure 6.10a). (b) The motor population vectors computed during the visual
condition for 7 directions of movement, by using Equation 6.4.

the two networks is due to the selective strengthening of the cortico–cortical connections

associating visual and motor neural populations with similar directional selectivity. In the

following section, we try to explain how the alignment of the maps has occurred and what

are the characteristics of the inter–cortical connectivity which allow it.

Organization of inter–cortical connectivity

The reader is reminded that one of the main results of the simulation on motor cortex self–

organization was that the strength of lateral connections is negatively correlated with the

difference between neurons’ preferred directions. With respect to the visuomotor model, we

want to perform a similar analysis of the cortico–cortical connections. Hence, we compute

the cumulated weight value for all synapses between neurons whose preferred directions

form the same angle. Results are shown in Figure 6.16. To illustrate the result the cumu-

lated (normalized) value was used, instead of the average measure, because of the large

number of weights with very small values (� 
��) resulting from initialization. However,

both measures indicate the same finding: the negative correlation of inters–cortical connec-

tion weights with the difference between the preferred directions of the visual and motor
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Figure 6.16: Dependence of the cumulated (normalized) weight value on the angle between
preferred directions of neurons. Note that maximal connectivity strengths correspond to an
angle between preferred directions of �
Æ.

neuron pairs.

In comparison to the organization of lateral weights in the motor cortex (Figure 6.9) the

visuomotor connectivity is characterized by a larger distribution of weights values. In the

latter case, non-zero weights exist between neurons with PDs forming an angle up to ��
Æ

and the peak of the synaptic strength corresponds to a difference between PDs of �
 Æ (i.e.,

compared with 
 for the motor map). Both features suggest a broader coupling of neurons,

which has an effect on the accuracy on the generation of the desired direction of movement.

The findings with respect to the strengths of the mapping connectivity are relevant to those

inferred mathematically by Salinas and Abbott (1994). The authors proposed that for map

alignment to occur, the strength of the synaptic connection between neurons has to depend

only on the magnitude of the difference between their preferred locations (i.e., directions)

(see Section 3.3.3). In our simulation we found that the function between the strength of

connection and the angle is a negative correlation.

Analysis of neural properties

The organization of the inter–cortical connections as described above, indicates one of the

causes of the networks alignment: the visual and motor neurons with similar directional

preferences become selectively coupled. Strengthening of these synapses instead of others
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occurs due to the time–correlated activity of those visual and motor neurons involved in

coding the same direction of movement.

The above analysis is quantitative. It shows that at the population level, neurons coding

similar directions become selectively coupled, but does not tell us how many and which of

the motor neurons respond to visual information. To answer these questions, we begin by

examining the profiles of motor activity patterns in the visual and motor conditions. The

analysis reveals differences with respect to which neurons are activated in each condition

and in the tuning properties of those neurons involved.

First, in the visual condition a larger distribution of the preferred directions of neurons in-

volved in the generation of movement is observed. Compared to the motor condition, where

neurons participate in coding directions which form an angle no larger than �
Æ with their

PDs, in the case of visually guided movement neurons with optimal tuning up to ��
Æ from

the current direction are activated. As we mentioned above, this broad activation is due

to the development of inter–cortical connectivity that links more than only neurons with

similar preferred directions.

The formation of this visuomotor coupling can be explained by considering the character-

istics of the learning procedure and the specifics of the motor neural responses. In our

learning algorithm, for a synapse between two neurons to be strengthened, the presynaptic

visual spike which travels through the axon for about �
 ms (i.e., time interval whilst the

postsynaptic neuron can fire up to 	 times) has to reach the postsynaptic motor neuron in

a short time window before this one fires. Obviously, this large delay makes the synchro-

nization of the presynaptic and postsynaptic activities more difficult. Accordingly, motor

neurons, which fire at high discharge rates during the whole movement, rather than neu-

rons which fire precisely timed, but fewer spikes, will be favored in establishing functional

connections with the visual neurons.

The analysis of the dynamics of motor neurons reveals two things. First, the neurons that

become responsive to the visual stimulation are indeed those neurons (lateral or winners)

that exhibit high discharge rates in the motor condition. By firing during both the execution

and the perception of movement direction, these units give rise to a new type of visuomotor

neural behavior (see discussion in Section 7.1.3). Second, for each direction of movement we

found that about �
� of the motor neurons remain silent during the visual condition. That

is, they participate in the action execution in the motor condition, but not when the stimulus

is visual.
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Third, an interesting finding is the activation during the visuomotor mapping of a particu-

lar subset of motor neurons, from those, which are not very active for movement execution.

These are motor cells that hardly reach the threshold when a movement is generated in the

absence of visual input. Hence, during the motor condition, they emit very few spikes due

to random factors (i.e., noise) and usually they are in a sub–threshold state. A slight increase

in the inter-cortical weights determines that the visual signal is integrated together with the

local lateral excitation and the motor input and causes their constant firing. Note that in

order to fire, these neurons have to receive intra–lateral excitation, hence they are situated

inside the assembly currently involved in the execution of movement. Furthermore, because

the visual spikes trigger their activity the inter–cortical synapses of these units are signifi-

cantly increased. This leads to the fact that, eventually, the visual signals independently can

activate them.

Results show indeed, that these signals related to neurons firing at high rates during the

visually guided actions. By contrast, the motor neurons involved in the command of move-

ment spend much of their time in the refractory period. Hence, they have less chances to

synchronize with the arrival of the visual spikes and to increase significantly their inter–

cortical weights. Furthermore, it is not a coincidence that the signal related neurons are

placed in the center of a cell assembly, similarly to the way lateral neurons are situated.

That is, because only in such positions characterized by a strong surrounding excitation,

can these neurons accumulate enough stimulation to fire. In a reciprocal manner, the visual

related neurons send excitation to the other cells situated in the same neighborhood.

Based on these observations, we propose a hypothetical scenario for how visuomotor map-

ping of direction takes place in our model. In the first place, a percent of the motor neurons

are activated directly by the excitation coming from the visual neurons. Second, the visual

signals trigger activity in the visually–related motor neurons, which in turn spread activa-

tion in their neighborhood and determine the population to fire. Note that the visuomotor

neurons firing are placed inside the cell assembly, which we want to activate. This hypoth-

esis is consistent with the neurobiological findings describing the existence in the primary

motor cortex of different types of units, including sensory–related, motor, and sensorimotor

neurons (Zhang et al., 2000; see also discussion in Section 7.1.3).

Further work will be aimed at exploring the means by which we can improve the visuo-

motor mapping accuracy. These preliminary results suggest that a correct alignment of the

two maps is favored by a large, distributed representation of directions, coded in the dis-
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charge rates of neurons, rather than in the precise timing of the spikes. We believe that a

more accurate visuomotor mapping can be learned using a larger motor network, where

each direction of movement is multiply represented in the discharge rates of an extensive

population of neurons. We also aim to explore in more detail the role of visually–related

motor neurons in the formation of the motor response.

6.2.5 Discussion

In this section a computational model for the visuomotor mapping of directional informa-

tion was proposed. From our view, learning of the visual guidance of movement is a de-

velopmental process, which takes place by unsupervised means. Moreover, it occurs be-

tween two systems that have already developed specific capabilities for representing and

generating directional movements. To elicit an appropriate motor response, the directional

information must be transferred from the visually related areas to the arm-control areas. We

believe that the basic operation in this process is carried out through the correlated activ-

ity of directionally selective cells placed along the reach–related areas of the parieto–frontal

network.

Our model shows that the visuomotor transfer of coded information is supported by the

development of inter-cortical connection weights negatively correlated with the difference

between the preferred directions of the visual and motor neurons in a pair. This result con-

firms the estimation made by Salinas and Abbott (1994). Furthermore, we found out that

not all motor neurons in the map become responsive to the visual input. Those which do,

are represented mainly by neurons that are significantly tuned to directional information

(i.e., fire with high discharge rates) during the movement command. Besides the visuomo-

tor neural behavior, a type of signal-related neurons develop in the motor area, from those,

which were not very active during the generation of movement. These neurons may play

an important role in relaying information from the visual cortex to the motor areas (see also

Section 7.1.3).

The idea of using the correlated activity of motion selective cells for visuomotor mapping

has already been modeled by Burnod et al. (1982), Salinas and Abbott (1995), and more re-

cently has been made the basis of a theoretical framework proposed by Burnod et al. (1999).

Compared to this earlier work, the merit of the current study is to have obtained an align-

ment of the motor to visual information in conditions of realistically implemented motor
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coding of direction. In our scenario, by contrast with previous models, directional selec-

tivity and population coding emerge in the motor network, as a result of a developmental

process. Moreover, self–organization in our model occurs on networks of spiking neurons.

In this respect, the simulation work described in this chapter revealed interesting findings

on where directional information is coded. On the one hand, for the fast control of move-

ments, directional information might be read out, if necessary, from the timing of the first

spike of a subset of spontaneously activated neurons. On the other hand, the visuomotor

mapping accuracy depends on the way the directional information is coded in the motor

cortex. In this case, rate coding over a large population of neurons supports the correla-

tion of activity in the two networks and allows learning. More work is needed in future to

analysis in detail the synchronization of activity at the level of single spiking events.

Compared to the previous models of sensorimotor mapping based on the correlated fir-

ing of motion selective neurons our model has modest aims and attempts to address fewer

issues. We do not account for coordinate system transformation (see Salinas and Abbott,

1995) and our simulations are not effectively implemented for motor control (Bullock and

Grossberg, 1993). Rather, our model constitutes an illustration of how a complex problem,

such as the visuomotor mapping can be implemented in a very simple manner by two net-

works of directionally selective spiking neurons. This model argues for the importance of

the individual neurons low–level properties (i.e., as directional selectivity) in implementing

large–scale phenomena. Our hypothesis that the neural selectivity for stimulus attributes

lies at the foundation of visuomotor mapping is very similar to the theoretical concept of

combinatorial domains proposed by Burnod et al. (1999). We consider that our simulation

findings have computational relevance for the experimental framework developed by these

authors (see discussion in Section 7.1.4).

Moreover, the model proposed supports the thesis that gaze (i.e., eye) movement neural

activity can be re–used to control the movement of a limb. In our view, this means that

the directional gaze information becomes correlated, through a mechanism similar to the

one described here, with the arm movement activity, allowing the eye–hand coordination

through a motor–to–motor program re–use (see Section 7.1.4). In the final chapter, the rel-

evance of our findings to the current theses of visuomotor development will be discussed

(Section 7.1.4, along with the possible applications of our models (Section 7.2).
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Discussion and future directions

The final chapter of this thesis includes a discussion of the simulation results obtained and

of the theoretical and practical significance of our work. In Section 1 the neurophysiological

implications of the models on motor cortex self-organization and visuomotor mapping are

discussed. In Section 2 we discuss the psychological relevance of the visuomotor model to

the imitation issue and we present future extensions and possible applications of our work.

7.1 Neurophysiological implications

7.1.1 Emergent vs. innate directional selectivity of motor cortical neurons

Despite the vast body of knowledge currently relating to the motor control of the arm, there

are conflicting explanations of how the neocortex participates in motor control (see the de-

bate on muscles vs. movements encoded in primary motor cortex in Section 2.1.2). One

impediment to a complete explanation of the function of the M1 is that the fundamental

organizational principles of the cortical motor areas are yet not clear (Sanes and Donoghue,

1992). For instance, there is a large body of evidence indicating that directional tuning is

an essential feature of motor cortical neurons (Section 2.1.3). However, it is not yet known

whether this neural characteristic is acquired by experience or genetically encoded.

Our modeling work on the self–organization of motor cortex represents a first attempt to

provide a learning scenario for how motor cortical neurons develop directional selectivity.
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Put generally, it demonstrates that a self–organizing map can learn to distinctively represent

and command �� directions of movement, by extracting the similarity relationships from the

input space. The success of the self–organization process is dependent on two factors: the

input patterns and the feedback connectivity system.

A self–organizing feature map is a means of visualizing in a reduced dimensional space

(usually two) the spatial relations existing in a multidimensional space. Hence, if we aim to

approach the formation of the motor directional maps from the self–organization perspec-

tive, the crucial aspect consists of the characterization of the input signals that are available

to the training process. From this view, the population coding operating in the motor cortex

and the functional connectivity that has formed, are the result of a self–organization process

and reflect up to a point, the peculiarities of the input space. However, as it was pointed

out elsewhere in this thesis, in the case of the motor cortex as opposed to the visual cortex,

it is less clear what precisely might be the input (i.e., training) data to the self–organization

process. Our hypothesis is that the formation of the directional motor map is driven by

proprioceptive feedback from those muscles involved in movement. This idea will be the

starting point of our future work on modeling motor cortex organization (see details in Sec-

tion 7.2.2).

In our model, a directional feature map emerges through unsupervised learning from a

random initialization of the afferent and lateral connection weights. There is one built–in

constraint in the shape of the network connectivity: the short–range distribution of excita-

tion and the long–range inhibition. The connectivity with a Mexican–Hat profile is a general

feature of a self–organizing feature map. That is, because short–range excitation is needed

to focus the activity in the immediate neighborhood of the winning neuron, while the long-

range inhibition helps to suppress the network response in the contralateral direction of the

movement.

There is experimental evidence for the existence in the motor cortex of adult animals of ex-

citatory connections which link nearby neurons with similar neural responses and of distal

inhibitory connections between neurons with different tuning curves (Georgopoulos et al.,

1993; Hatsopoulos et al., 1998). However, it is not clear if this is a result of a developmental

process taking place in the motor areas or represents a built-in feature. We believe that these

kinds of questions can be easily explored through modeling work, with promising and valid

results. Part of our future work is aimed at exploring the influence on the map organization

of the variation of connectivity pattern parameters (i.e., the rate of the connectivity and the
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spatial distribution of the lateral feedback).

Can be the motor cortex modeled like the visual cortex?

Another observation with respect to the theoretical assumptions of our model, concerns

the fact that it was mainly inspired by models of the visual cortex (see also discussion in

Section 7.1.2 below). The power of the visual model was twofold. Firstly, at its heart, the

modeling of visual cortex organization challenges the idea of innate cortical features (Hubel

and Wiesel, 1962; Gilbert and Wiesel, 1992). We believe that if it is possible that the visual

directional maps are shaped by experience, then it may also be feasible to model the devel-

opmental processes of motor cortex. This hypothesis is supported by experimental studies

that indicate that there is a self–organization capacity in the cortex of adult animals, which

is perhaps part of the original developmental organizing processes (Merzenich et al., 1983;

Hess and Donoghue, 1994; Rioult-Pedotti et al., 1998).

Secondly, the modeling studies of the visual cortex put forward in the last decade a core

of hypothesis on the computational and design principles of the brain. First, the self–

organizing feature map (SOM, Kohonen, 1994) has been very successful in modeling the

development of sensorial maps. It has become almost a de facto standard in the biologi-

cal modeling of brain self-organizing processes. Secondly, computational studies pointed

out the essential role played by the horizontal connectivity in the formation of orientation,

binocular, or directional maps (Section 2.2.4). Placed in this context, our simulation work

has the advantage of a bi-directional knowledge transfer. On one hand, our study has been

largely inspired by existing models and data from the sensory cortices. On the other hand, if

our model proves successful in simulating the formation of motor directional maps, then it

provides computational evidence of the learning mechanisms and the functional principles

of the motor cortex.

Our findings (Section 6.1) indicate that the self-organizing feature map represents an ap-

propriate modeling framework for the developmental processes taking place in the motor

cortex. Furthermore, we found that the lateral feedback system plays an essential role in

the organization process, in a similar way to the role it plays in visual cortex development.

Plasticity of both excitatory and inhibitory connections is essential for self–organization to

occur, by finely adjusting cells tuning level to the input space features. Exploring the effects

of learning in terms of single spike timing represents our original contribution in the area of
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self–organization with spiking neurons. Our model indicates that directional information

may also be read out from the timing of the first spike of fast responding neurons. Surpris-

ingly, this observation comes out as a possible common feature of information processing in

the visual and motor brain.

Until very recently, the common belief in computational neuroscience was that information

in the brain was carried mainly by the neuron’s discharge rate (see Section 6.1.5). Recent

experiments on visual categorization revealed the existence of a very fast processing of in-

formation in the visual cortex, possibly based on the order or timing of a single spike per

neuron (Thorpe et al., 1996; Thorpe and Gautrais, 1998). In the case of the motor system, the

influential work of Georgopoulos and his co–workers (1984, 1986) proposed the population

coding scheme as the main paradigm used to interpret and predict movement based on the

motor cells’ discharge rates. Based on our modeling results, we suggest that a fast response

of the motor cortical areas, read out from the timing of the first spike of optimally tuned

neurons is certainly advantageous and quite likely implemented by the motor system. The

only restriction is that such an answer has a very limited precision and only further process-

ing of the directional information by a large population of cells can give rise to an accurate

reach movement.

It is beyond the scope of this thesis to offer an answer to the question of whether directional

selectivity is a genetically encoded feature of the motor cortex or is acquired by experi-

ence. The model proposed here provides only a number of computational ideas on what it

takes to develop neural selectivity and population coding in a biologically plausible system,

by unsupervised means. We believe that by developing optimal responses in its elements,

rather than having them pre–wired, a system can show a flexible and plastic architecture

that adapts to the resources available and to the particularities of the input space.

7.1.2 More evidence for the importance of horizontal connections

It was pointed out that in our model, an essential role in the organization of the motor map

was played by plastic lateral connections (see Section 6.1.5). Our findings show the for-

mation of functional connectivity in the motor area with a similar profile to the patterns

of connections described in other brain areas. Thus, experimental data from primary vi-

sual cortex shows that horizontal projections link columns with common ocular dominance

and orientation selectivity’s (Gilbert and Wiesel, 1992). In the auditory cortex dorsoventral
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connections link regions with matched characteristic frequencies (Read et al., 2001). Recent

modeling of eye–saccades planning in the lateral intraparietal area (Xing and Andersen,

2000) have shown that in order to hold memory activity for a saccades, the neural popula-

tion develops excitatory connections between units with similar preferred saccade directions

and inhibitory connections between units with dissimilar directions.

Previous modeling results similar with ours have been obtained by Lukashin and Geor-

gopoulos (1994). They found that during a supervised learning process, the strength of

connection between directionally tuned motor neurons becomes negatively correlated with

the difference between their preferred attributes. This sort of experimental data and com-

putational work, suggest the manifestation in the brain of a general principle for horizontal

connections organization. It is generally believed that this is reflected in the correlation be-

tween the strength of interaction and similarity among units’ preferences.

With respect to the computational function of the lateral feedback system, our model of mo-

tor cortex organization and visuomotor mapping, indicate a crucial role of the horizontal

connections in shaping the activity of the network and in favoring the formation of stable

attractors of motion directions (see Section 6.1.5 and 6.2.4). On the short scale, the lateral

excitation increases the collaboration within a cell assembly, while the lateral inhibition sup-

presses the answer in the opposite direction. On the large scale, the plastic connections

implemented in the visuomotor system, mediate the transfer of information and synchro-

nization over a large distance (i.e., 50 ms delay). Our findings suggest that correlated activity

in motor and visual networks is a result of both organization of long–range connections and

collaboration mediated by the local lateral pattern.

Similar observations have been made by Usher et al. (1996), who studied the role of long–

range connections for visual binding and line completion. They used a network of leaky

integrate–and–fire neurons with long–range connections implemented only between cells

with similar orientation preference. Their findings revealed a clear tendency for synchro-

nization between cells with same orientation preference separated by large distances. In

their model, if two distal cells placed in the range of clustered connections receive the same

stimulus (even if they are not optimally tuned themselves), they indirectly synchronize via

the intermediate synchronization with their optimally tuned neighboring cells.

Compared to Usher and co–workers work, our simulation has the advantage of develop-

ing the profile of the long–range connections. In our case, the network coupling consists

of a full connectivity from the visual to the motor network, initialized with weight values
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nearby 
. By doing this, we do not arbitrarily restrict which is the visual directional informa-

tion perceived by the populations of motor neurons that encode all movements directions

(i.e., in our case, whole motor network). The coupling of neurons according to their prefer-

ences, should be an emergent feature, rather than a built–in property that limits the network

plasticity.

In our model, as a result of learning, clustering of connections occurs in a similar way to

the pattern implemented by Usher and colleagues. The strength of long–range connections

cluster in spatial neighborhoods that correspond to the directional cell assembles in the mo-

tor area. Accordingly, correlated activity between visual and motor neurons is induced not

only via the long-range synapses, but also through the mediation of the visually-related mo-

tor neurons optimally tuned to the direction of movement (see discussion in Section 7.1.3

below). Future work will take into account a more realistic scenario in which the cortico-

cortical projections start with some initial non-zero (i.e., biased) values and weakening of

synapses, besides strengthening, will be allowed.

7.1.3 Dynamics of single neuron activity in the motor cortex

Up to this point, the discussion has focused upon describing the main requirements for

self–organization of the motor map and the alignment of visual and motor neural represen-

tations. However, an important co–lateral effect of modeling these developmental processes

was to observe the emergence in the motor network of different patterns of neural behavior.

These may reflect various functions in the preparation and execution of movement, which

are discussed below.

During initialization, the neural spiking model is set up in such a way that all motor cells

begin the simulation equally selective to all motion directions. However, learning in a self–

organization map (SOM) is a competitive process and takes place by amplifying any small

differences in the neural response. If one neuron wins for a certain direction, its synaptic

strengths are modified to increase its chances of winning again for that pattern. In this

tuning process, the variability of the neural response is an essential factor and is given by

the level of noise (i.e., in the threshold value, the firing time, the spike transmission delay)

and the pattern of connectivity. Due to the fact that input signals can arrive in a synchronous

or asynchronous way, this neural variability causes the possible operation of neurons in two

modes. Thus, a neuron is capable of switching between computational modes, from the
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integration of firing rate input received from a large number of neurons, to the detection

of coincident spike arrivals (see also experimental evidence for neurons acting in different

computational modes in Destexhe and Pare, 1999). Hence, we can describe the existence of

two main classes of neurons.

The first class, that of coincidence detectors, is mainly formed by the winner neurons, which

represent about �
� of the neurons in the motor area (i.e., ��
'���) (see Section 6.1.5). These

neurons respond very rapidly to the input signals that are emitted synchronously and af-

fected by similar values of noisy delays. Hence, their afferent weights become highly tuned

to one input pattern. Note an important difference between learning with a SOM of contin-

uous, rate-coding neurons and a SOM consisting of spiking neurons. While in the former an

input pattern is mapped onto a single neuron that has the maximum activation, in the later,

any pattern similar to the best–matching pattern will determine the firing of the winner

neuron. Hence, if there is no increase of the neural threshold, what we have obtained in our

spiking SOM, were neurons highly responsive to several (i.e., maximum three) directions of

movement.

It is noteworthy that the preferred directions of each neuron, when represented on a circle,

occupy an arc of maximum �
Æ. Similar results have been described experimentally by

Battaglia-Mayer and colleagues (2000) on a study of early coding of reaching in parieto-

occipital cortex. The authors have found that reach-related cells in this area have about three

preferred directions of movement. Consequently, they characterized the neural response

through a ’field of global tuning’, defined as the sector of the directional continuum within

which all its preferred directions lie (e.g., approx. a quarter of a circle).

A second class of behavior is represented by the integrators, which are neurons that are

commonly needed to integrate a large number of inputs in order to fire. If a neuron did

not spike at the coincident arrival of the input signals, then due to the exponential decay

of postsynaptic potentials, the accumulation of several excitatory potentials will be required

before the postsynaptic spike will occur. Hence, these neurons’ activity strongly depends on

the strength and the number of their lateral excitatory connections. In the motor condition,

about �
� (i.e., �
'���) of all neurons show a significant directional tuning while operating

in the integration domain (see Section 6.1.5). These cells, referred to as lateral neurons, need

to integrate both motor input and local lateral excitation in order to become active.

Another subclass of integrators is the neurons, which need to sum excitation from three

sources: afferent, local, and long–range connections. Directionally tuned activity occurs
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in these motor neurons only during the visual condition. Accordingly, they were named

visually–related neurons and they constitute about �
� of all motor units (i.e., ��'���). A

remark here is important with respect to the degree of directional tuning of these neurons.

It was shown in Sections 6.1.5 and and 6.1.5 that most of the winners are broadly tuned to

several directions of movement, while lateral neurons responses are less broader. In the light

of the above discussion, we can say that the selectiveness or tuning of the neural response

increases with the number of inputs integrated. Thus, the lateral neurons are significantly

more directionally tuned than the winner neurons, and the visually–related neurons are

optimally tuned (i.e., most selective) compared to both previous categories.

Even if our simulations represent a drastic simplification of the mechanisms involved in

neural control of reaching, several hypotheses are presented here, with respect to the func-

tional roles of neurons. Studies of visuomotor processing in the parieto–frontal network

involved in reaching demonstrated the existence of various types of neural activity. During

an instructed delay task followed by a pursuit tracking task, Johnson and colleagues (1999)

have analyzed the directional discharge of neurons in monkey’s premotor and primary mo-

tor cortex. From ��
 neurons, in ��� cases, significant directional tuning was found for both

the cue and track periods. In �� neurons, directional tuning was found only during the cue

period, and in another �� the directional tuning was significant only in the track period.

These neural behaviors can be classified as: (1) visuomotor neurons, whose activity show the

co–existence of visual and movement control signals; (2) signal neurons, defined as motor

neurons with visual properties, which respond transiently to the onset of the visual cue; (3)

movement-related neurons that fire only for movement control.

We have obtained similar dynamics for cell activities in the motor network as a consequence

of learning the visuomotor mapping task. From ��� motor neurons, about �
� developed

visual properties, from both the winner and lateral neurons. In the absence in our model,

of a behavioral task comparable to the instructed-delayed task, the visuomotor neurons are

represented by those neurons which show directional activity during movement execution

and under visual stimulation. The signal neurons correspond to our visually–related mo-

tor units (�
�), which fire only during the visual stimulation period and are almost silent

during movement execution. Finally, we have also found about 	� of motor neurons that

are involved in the control of directional movement, but remain silent when stimulated by

visual signals. These correspond to the movement-related neurons described experimentally.

Our results suggest that the formation of the motor network’s response under visual guid-
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ance take place in a few steps. First, the visuomotor neurons are activated via the long-range

inter-cortical connections by the visual directional signals. Note that in our model, the

strength of these connections reaches a peak for a difference between the distal visual and

motor neuron preferred directions of �
Æ. Therefore, the motor network response evoked

in this way is broadly tuned to the desired direction of movement. Instead, the signal (i.e.,

visually–related) neurons that occur in the motor network are optimally tuned to the visual

direction of movement. Hence, they can play an essential role in finely adjusting the motor

population response (see Section 6.2.4). The next stages in the formation of the network re-

sponse involve a successive propagation of activation, started by the visuomotor and signal

neurons and mediated by the motor lateral neurons. The joint activity of all these neurons

leads to the formation of the desired direction attractor.

Up to this point, we focused upon discussing the immediate implications of our model-

ing results. In the remainder of this section and along the next section we will outline the

theoretical relevance of our models and their possible application to real systems.

7.1.4 Theoretical significance of the visuomotor mapping model

In the theoretical background of this thesis we reviewed a number of recent neurobiological

theories of visuomotor control of movement (Sections 3.1.2, 3.2). At that point, we intro-

duced four main hypotheses:

� The sensorimotor cycle has a unitary nature;

� The visuomotor transformation is achieved gradually, supported by the combinatorial

properties of the neurons;

� The existence of common motor programs for eye and hand movements can reflect the

operation of cortical computational principle of ’program re–use’

� The alignment of motor and visual networks for the correct transfer of information can

be learned through a simple Hebbian learning principle.

While the last principle has been directly addressed in our simulations, the implications of

our work for the other points might not be immediately clear. Therefore, we propose below

an integrative view, which presents the theoretical relevance of our computational results.
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The progressive match framework

Despite the simplification of the visuomotor transformation process in our model, we be-

lieve it illustrates a number of basic computational principles of this process. In particular

we consider that our modeling work is relevant to the theoretical framework proposed by

Burnod and colleagues (1999), even more so because, at the time we implemented our sim-

ulations (2000) we were not aware of their work.

The basic computational demand for reaching is met by the alignment of the visual and mo-

tor neural representations. This was achieved in our model by implementing a Hebbian–like

learning mechanism, that correlates activity in spiking neurons with some feature selectiv-

ity, that is, in our case, directionality. Burnod’s et al. (1999) model is based on the operation

of an equivalent mechanism. The visuomotor transformation is described in terms of a pro-

gressive match of different sets of sensory information by neurons with tuning properties.

Matching takes place gradually, in several combinatorial domains. In each domain, an iden-

tical computational mechanism operates, through the co-activation of matching neurons

tuned to the same preferred attribute (position or direction).

The contribution of our model resides mainly in the fact that it is based on computations

with spiking neurons and implements a realistic population coding of motor directional-

ity. The operation of the computational mechanism implemented is not restricted to any

particular area. It can align neural representation coding for any type of stimulus features

(orientation, direction, pitch, etc.). Moreover, it implements learning on two of the four

combinatorial domains described by the authors (Section 3.2.3). If we consider the training

input to the self–organizing motor cortex as proprioceptive afferent feedback coming from

activated muscles, than we have in the motor network organization, the learning of the first

domain, which relates muscle dynamics and arm command. By relating the gaze direction

and hand movement direction in the visuomotor mapping process, the system learns hand-

tracking in the third combinatorial domain. Note that in our model, and the Burnod et al.

(1999) framework, motor control, i.e., referred to as a motor babbling stage in the progressive

match framework, is developed prior to visuomotor mapping learning.

The relevance of our model is even more significant, it we consider that in the Burnod and

coworkers proposal most concepts were inspired by neurophysiological data. Instead, our

model started out with a minimum set of architectural assumptions and a number of equiv-

alent concepts emerged in the network, through development. For instance, in the pro-
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gressive match model, a key element is the set of units, which integrate information on the

sensorimotor axis: sensory units, motor units, and matching units. It is clear that the type

and functionality of these units has been implemented according to the experimental data

(Johnson et al., 1996; Caminiti et al., 1998; see data described in Section 7.1.3). Conversely,

in our model these types of behavior have simply emerged during the self–organization

process.

Moreover, in the absence of a working model, Burnod and colleagues focus upon the role

of the matching units within the learning process of sensorimotor correlations. Instead,

we have seen that correlated activity in two networks is a result of synchronization via

long–range connections but also through intermediate synchronization with neurons in the

same cell assembly. That is, learning takes place in a more distributed manner and involves

matching (i.e., visuomotor) units as well as signal (i.e., sensory) units and movement-related

units. We believe that an important further step into the realm of biologically inspired mod-

eling of arm–reaching will be represented by the complete implementation of the progres-

sive match architecture. Our efforts will be aimed at implementing more conceptual ele-

ments of this framework. A particular goal will be to obtain the formation of condition or

set units, which are involved in maintaining the neural representation during delayed tasks

(Johnson et al., 1999; Burnod et al., 1999).

Cortical Software Re–Use

Another theoretical framework within which we can discuss our results is the cortical soft-

ware re-use theory (CSRU, Reilly, 1997; Reilly, 2001). Put simply, CSRU states that a general

principle of creative cognition is the appropriation of computational programs from one do-

main and their application to another. For instance, CSRU proposes that perceptual binding

can be seen as a collaborative process between cell assemblies that are equally well devel-

oped (Reilly, 2001). The style of computation is best viewed as a process of dynamical en-

trainment, involving the synchronization of firing patterns in reciprocally connected cortical

areas. We believe that the neural mechanism for ’binding’ visual input to the relevant motor

output for visuomotor mapping implements a similar type of computation. In CSRU terms,

the visual neural activity is re–used to control the movement of the limb.

A stronger claim (i.e., hypothesis) is that the limb movement may make use of the eye mo-

tor activity, in a so called motor–to–motor program re–use (see Section 3.1.2, Metta et al., 1999;
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Reilly and Marian, 2002). Note that this hypothesis states that visual (i.e., retinal) infor-

mation is not necessarily required for the guidance of movement. The alternative to this

process is that the motor program for eye movement is re-used to control limb movement in

the same direction. This re-use has the advantage that eye-movement related signals can be

read out at any processing stage, from various cortical and subcortical areas, and they are in

head-coordinates, compared with the retinal information in Cartesian coordinates.

Some computational support for this hypothesis already exists. Metta and co–workers

(1999) have implemented a model of visually guided reaching based on the alignment of

the head map with the arm network (see Section 3.3.1). Similar results have been obtained

by Marjanovic et al. (1996), who constructed a system that first learns to foveate a visual

target and then re-use the saccade map to achieve ballistic reaching. Such modeling work

provides a compelling example of how motor programs for eye movements or heading (see

also Kolesnik and Streich, 2002) can support the development of visually guided reaching.

From a developmental perspective, the program re–use makes much sense, as the ’software’

for heading, eye movements and gaze focus develop priori to the control of reaching. Con-

sequently, this hypothesis has a great potential in the robotics field.

The perception–action cycle

A final thought in this theoretical section, will be given to the unitary nature of the senso-

rimotor coupling. With respect to this rather abstract issue, much less can be inferred from

our simple model of visuomotor mapping. One might say that our assumptions are rather

a personal choice than scientifically proven facts. We have developed them while trying to

find ways to implement the sensorimotor transformations.

The personal belief of the author of this thesis is that sensorimotor mapping is a fundamen-

tal, built–in property of any living nervous system. This means, that as a general principle

of any nervous system, sensing–for–acting is implemented as one unitary computational

operation. Hence, to characterize the task of transforming the sensory information from

one modality to the motor output in another modality as the sensory–motor transformation

’problem’, is perhaps to view it from the wrong angle. Moreover, because it is a general

and ancient design principle of the nervous system, it is implemented at the lowest–level

of the system and it is preserved in more complex variants of the system (i.e., primates or

human brains). We consider that the apparent modularity of the human brain and the high
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degree of sophistication of its circuitry conceal the functioning of some low–level, built–in

mechanisms which implement fundamental computational operations.

With respect to the transformation concept, we believe that it owes much to Cartesian du-

alism (i.e., external vs. internal world). We are probably on the same line with the critique

made by a roboticist of the general tendency to assume that description and implementation

of a system must be equivalent:

We believe that classical and neo-classical AI make a fundamental error: both
approaches make the mistake of assuming that because a description of rea-
soning/behavior/learning is possible at some level, then that description must be
made explicit and internal to any system that carries out the reasoning/behavior/learning
(Brooks et al., 1998, page 961, our emphasis).

Insights from our modeling work, and other more sophisticated models by Salinas and Ab-

bott (1995), Burnod, Baraduc and colleagues (1999), showed us that a global complex oper-

ation, such as information transfer for the visual guidance of movement, may rely on the

simple mechanism of correlated activity of single cells. The core of our model is based en-

tirely on the ubiquitous feature of neurons to be directionally selective. A more general

solution to the problem of sensorimotor transformation based on similar basic computa-

tional mechanisms was given by Salinas and Abbott (1995). Furthermore, it was discussed

that combinatorial properties of directionally and positional selective neurons are the key

element in the progressive match architecture for visually guided reaching (Burnod et al.,

1999).

First, at the level of a single cell, several sources of information can be integrated along the

sensorimotor axis (see Section 3.2.3). Second, the correlated activity of cells with the same

preferred attributes (direction and position) can allow the correct transfer of information.

Third, the coordinate transformation can be understood in terms of neural gain field, where

the response of a neuron is a product of the receptive field and the linear gain field (see

Section ??). The point we want to make here, is that neural information processing systems

rely heavily, on the computational features of single units.

In the computational neuroscience field the ideas outlined above, are well known. However,

in the field of artificial intelligence and robotic applications, almost no attention is given to

the properties of the neural model. For instance, a very succinct comparison between types

of neural models existing reveals the following. A continuous rate-coding neuron, that rep-

resents the computational unit of the classical neural networks, can compute a temporal
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linear summation of inputs. A simplified model of the spiking neuron can in addition de-

tect coincidence, can do multiplexing, and can compute in a temporal domain using delay

codes (Maass, 1999). A compartmental model, which includes the dendritic tree, can per-

form spatial summation, nonlinear operations (division), can increase its discrimination and

memory power up to thousand times that of the linear neuron, and can detect movement

direction and binaural stimuli (Koch, 1999; Poirazi and Mel, 2000).

The above comparison represents a twofold argument. First, artificial systems may benefit

enormously from paying more attention to the neurobiology of the living systems and to

the way these implement perception and control of action. Second, the single neuron is

indeed a very powerful computational device. Hence, we believe that by connecting these

neurons in small size circuits, primitive operations such as the perception–action cycle can

be implemented as an intrinsic feature of the system.

7.2 Applications and future directions

The central goal of this thesis was to offer a computational model that helps to bridge the gap

between cognitive description and neural implementation of mental phenomena. That is,

to understand the link between what a single computational element does and what many

of them do when they function cooperatively. It was also pointed out, that understanding

the way the brain organizes the control of movement can be largely beneficial to the de-

sign of artificial control systems. In general, the research dedicated to the understanding of

computations in real nervous systems shares the same motivation: to apply what is learned

from nature into the design of adaptive, intelligent, and eventually self-developing artificial

systems. We will try to discuss, in this section, possible integration and future extensions of

our models to systems of motor control. Up to the present these ideas are only at the stage

of proposals. It remains future work to show to what degree their implementation can be

beneficial.

7.2.1 Transforming plans in actions

A possible integration of the motor cortex organization model is within control systems

based on a direction-mapping strategy. In this case the system implements a transforma-

tion from spatial trajectory to end-effector directions or rotations as opposed to end-effector
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positions (Bullock et al., 1993; Fiala, 1995; Ritter et al., 1989). The idea of mapping spatial

into motor directions is supported by experimental evidence on the directional selectivity of

cells in premotor and primary motor cortex (Caminiti et al., 1991; Georgopoulos et al., 1986;

see Section 2.1.3). There is also psychophysical evidence for a direction-based rather than a

position-based transformation coming from studies on blind reaching. These experiments

suggest that the magnitude of the error is dependent on movement amplitude, rather than

on the end–point alone (Fiala, 1995).

One of the most efficient implementations of direction mapping for visually guided reach-

ing is the DIRECT model proposed by Bullock et al. (1993) (see Section 3.3.2). To control arm

movements, the system first performs an integration of position and visual directional infor-

mation into a position-direction map. In our model this corresponds to the motor network

which learns to align motor and visual directional information. Furthermore, the DIRECT

model focuses on learning the mapping from motor directions in body–centered coordinates

into joint-rotations in joint coordinates. The accuracy of a three joint arm movement in 2D

and 3D space strongly relies on the way the visual directional and positional information

are correlated in the motor map. The authors argue that only a sharp tuning of each cell

in the map, to a visual direction in a particular joint position, can ensure the accuracy of

reaching movements. Even if they acknowledge that this is a significant deviation from the

neurophysiological evidence (see population coding of directionality in motor cortex Sec-

tion 2.1.3) they justify it by the fact that in the case of broadly tuned cells, the model fails to

generate correct reaching movements.

The accuracy of visually guided movements is not an easy task for our model either, nor for

any model grounded on neurophysiological data (see also Baraduc et al., 1999). Our analysis

of the network organization leads us to believe that mapping accuracy is strongly influenced

by two factors: the parameters of the horizontal connectivity pattern and the quality of the

motor population codes for directions. By the parameters of lateral connections we mean the

rate of connectivity, the profile of excitation and inhibition, and the plasticity rules. By the

quality of the motor coding of direction we mean the stability and the distributed nature of

the neural representation of each direction. In other words, the accuracy of visually guided

reaching not only depends on how well the visuomotor coupling is learned, but also on

how precise the motor control of the movement is itself. That is why we consider that a

separation of the visuomotor development process into two stages may be beneficial. First,

a motor babbling or motor learning phase is required, to ensure the motor cortex organizes
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for the precise control of movements. Learning the visuomotor correlations follows this.

To conclude, we believe that the advantages of integrating a developmental model similar

to ours in a motor control system are many:

� It allows the emergence of population coding of directionality based on broadly tuned

cells. This gives biological plausibility to the model, besides bringing all the bene-

fits of a distributed representation (as opposed to a localist representation): flexibility,

plasticity, reduced size.

� By exploring the way learning evolves in the lateral connections, our model allows the

formation of stable attractors of movement directions, which in turn contributes to the

accuracy of reaching.

� Only by modeling the developmental process, can one observe the emergence of differ-

ent patterns of neural behaviors, with different functions in integrating and combining

information, matching, conditioning or delaying the response.

Motor primitives and the equilibrium point hypothesis

Another direction to follow in order to translate our motor plans into actions, is to control

the arm movement in conformity with the spring–like properties of muscles and reflex loops

(Bizzi et al., 1992). This idea involves putting together the concept of motor primitives and

the equilibrium point hypothesis, as an alternative to the inverse dynamics problem (i.e.,

the DIRECT model).

The motor primitives represent an appealing, rather theoretical concept, used by researchers

on both artificial and biological motor control to reduce the complexity of movement gen-

eration to elementary units of action. They are defined as a set of basis behaviors, which are

not further reducible to each other and which can be composed to produce the complete

behavioral repertoire for the system (Brooks, 1986; Mataric, 1997; van Essen et al., 1996). On

the other hand, the equilibrium point hypothesis is an experimentally–derived theory, ac-

cording to which movement arises from shifts in the equilibrium positions of the joints. An

equilibrium position is a consequence of the interaction of central neural commands, reflex

mechanisms, muscle properties and external loads.

A recent extension of the equilibrium point theory, developed by Bizzi et al. (1991) and
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Bizzi and Mussa-Ivaldi (1995) proposes that the muscles generate convergent force fields (i.e.,

equivalent to motor primitives), which direct the limb toward an equilibrium point in space.

The vectorial superposition of these independent force fields can generate a vast repertoire

of motor behaviors. The simulation studies of Mussa-Ivaldi (1999) have shown that by com-

bining a small number of convergent force fields it is possible to reproduce the kinematics

features of reaching arm movements.

The motor primitives proposed by Bizzi and colleagues suggest that spinal mechanisms can

serve as substrate for the operation of motor cortical activity, in order to produce a directed

movement of the limb. Georgopoulos (1996) proposed an integrative account of how direc-

tionally tuned motor cortical commands can be translated in the activation of muscles. In

his view, this mapping can be accomplished by connecting a population of central cortical

neurons through a set of motor inter–neurons, with a number of spinal populations associ-

ated with different motor primitives. Then, the preferred direction of a cortical cell emerges

as the vectorial, weighted sum of the force fields that act on the hand at a certain position in

space.

For our simplified version of motor control, this idea can be more beneficial and easier to

implement than dealing with the complexity of a multi–staged architecture, such as the one

implemented in the DIRECT system (i.e., with nine layers and learning at four different

stages). It also allows a bi-directional transfer of information in the system: an efferent

path, from the cortical motor network to the muscles and a re–afferent path, which brings

feedback on the muscles activation to the motor cortex. We believe that this can be the

appropriate framework for our future modeling work of motor directional map organization

based on training input coming from muscles (see Section 7.2.2 below).

7.2.2 Future model

Our future model of visuomotor learning will be developed with a specific goal. That is, it

will represent the neural controller of an avatar, endowed with simple vision, action upon

objects, and proprioceptive feedback on the effect of its movements. The first step in this

extension of the actual version of the model is to provide the motor network with propri-

oceptive feedback. In our view, the information available for the formation of the motor

directional map is represented by afferent signals from those muscles that are involved in

movement.
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Figure 7.1: General architecture of the future work model. It includes several modules. A
visual network of directionally tuned cells, with a retina-like input layer. A motor network
which self-organizes for the control of movement direction. Its output is send to a set of
force fields generators, which control the motor units in the muscles. Its input is provided
by a proprioceptive network that receives afferent signals from the motor units involved
in movement. These signals contain directional information, derived from the preferred
directions of the muscles.

Recent research on the contribution of muscles to joint torque indicated that mono- and

bi-articular muscles have different functional roles in the control of multi-joint movements

(Bolhuis et al., 1998). Experimental data demonstrated that the activation of bi-articular

muscles vary with the direction of force exerted, while mono-articular muscles show sig-

nificant direction-dependent activation. Furthermore, it was shown that the mono-articular

muscles have preferred movement directions, which cluster over subjects for both force di-

rection and arm posture. To us, this data suggests that the motor unit activity may provide

the directional information required for the organization of the cortical directional map.

Further, it is known that motor neurons in M1 make use of feedback information via affer-

ent sensory pathways. At the contraction of muscles, information on which muscle contracts

and how much tension it generates is fed–back to the motor cortex through the primary so-

matosensory cortex. Previous modeling work on this area was done by Chen and Reggia

(1996) who studied the relation between the formation of motor and somatosensory feature

178



Chapter 7: Discussion and future directions

maps for arm-muscle control. They have shown that an alignment of the neural represen-

tations of muscle activation in the two areas occurs through correlated-activity means. We

intend to explore this alignment in the case of the motor and somatosensory networks en-

coding directional information, derived from muscle tensions and contractions. The propri-

oceptive network will be mainly used in order to transmit the motor units’ activations as

input to the motor cortical network, in the hope that a directional motor map will form. The

proposed architecture is outlined in Figure 7.2.2.

7.2.3 The imitation challenge

At the end of this chapter, we want to turn our attention back to the initial motivation of

this thesis, that is, the neonatal imitation phenomena. Here, we discuss this issue within

the more general context of imitative behaviors, which represent one of our future mod-

eling goals. This is because imitation plays a central role in human development and is

currently being explored as a powerful, alternative mechanism for teaching robots (Schaal,

1999; Dautenhahn, 2000; Billard and Mataric, 2001). Hence, we would like to abstract some

relevant ideas to the imitation modeling, from the work presented in this thesis.

The challenge posed by neonatal imitation is to understand the capacity of infants as young

as few hours, to imitate facial expressions, such as tongue protrusion and mouth opening

(Meltzoff and Moore, 1977). Meltzoff and Moore (1999) proposed that a key element in

explaining the mechanisms of this behavior is that the imitative act can be differentiated into

the body part and the movement performed. They consider that evidence suggests that neonates

select what body part to use before they have determined what to do with it. Further, finding

the correct action on the organ involves more effortful behavior preceded by a series of

searching movements.

Certainly, being capable of organ identification is probably the most astonishing hypothesis

regarding the newborns innate capabilities. Interestingly, this problem is less controversial

when it comes to implementation in artificial systems. Generally, artificial systems avoid

this problem, either by dealing with the imitation of a single body part (i.e., arm) or by

implying a similar physical morphology between the demonstrator and imitator (Billard

and Mataric, 2001). Such a built–in capacity is face detection, based on a direct mapping

between the organ representation and the corresponding motor control area (Breazal and

Scassellati, 2002).
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With respect to limb action identification, the recent discovery of the mirror neural system

in the monkey’s premotor cortex (Rizzolatti et al., 1999) has been proposed as the system

responsible for the linkage of self–generated and observed actions (Arbib, 2002). The inter-

pretation is that mirror neurons can allow the matching of the neural command for an action

with the neural code for the recognition of the same action executed by another individual.

Mirror neurons have been observed for reaching and grasping actions, and they are highly

specialized for certain types of movements. It is possible that these neuron properties are

innate, similar to face detection capacity, hence they may explain, up to a point, the neonatal

imitation of gestures. Thus, they can facilitate recognition of hand manipulation and may

be involved in mapping the hand sight into the hand self–motion.

However, even if mirror neurons functionality has been recently incorporated in several

imitation modeling proposals (Billard and Mataric, 2001; Maistros and Hayes, 2002; Metta

and Fitzpatrick, 2002), few attempts have been made, so far, to understand the way they

develop such a highly specialized matching property (Arbib, 2001). We believe that explor-

ing the way mirror neurons’ functionality emerges can provide insights into their ’true’ role

in imitation and language development. We consider that an improved version of our vi-

suomotor model, which is already capable of showing emergence of multi–modal neural

behaviors and to give rise to different dynamics of the neural response, is in a good position

to explore this topic.

With respect to the movement component of the imitative act, most researchers agree that it

is not innately specified, but up to the present it is not known yet how this mapping is

achieved with such specificity. Here, it is important to delimit the existence of two devel-

opmental stages in imitation. First is neonatal imitation, which mainly consists of facial

gesture imitation and is probably supported by a subcortical system (Atkinson, 2000). This

is followed by the emergence of a true imitative behavior, which occurs after a few months

of post-natal life and is marked by the acquisition of eye-hand coordination (i.e., at about

3-4 months) (Butterworth, 1999; Atkinson, 2000).

Our view is that imitation in the former case can be best explained in the terms of dynam-

ical systems theory. From this perspective, development is self-organizing around various

attractors on which the configurations of the system tends to converge (Butterworth, 1999).

From this view, the prenatal movements provide experience to link muscles activations to

body configurations. In our terms (i.e., the terms of the progressive match architecture), this

stage corresponds to learning in the first combinatorial domain, where co–activation of mo-
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tor commands and organ configuration (i.e., muscles activation) establish the foundation of

proprioceptive control of movement. What this stage does, it creates a set of attractors in the

movement–somatosensory space.

Further, seeing the protrusion of the tongue between lips means, in terms of object identifi-

cation, that both lips and tongues visual areas are activated. These are further mapped to the

corresponding motor areas. Here, the oscillatory activity in the two areas can only evolve

towards one of the existent attractors. One attractor, which comprises neural activity for

both lips and tongue movement, is the one that places the tongue between lips. Note that,

the other imitated behaviors, such as mouth opening or eye–movements are even simpler,

as the activity here involves only one area and elicits a limited number of possible actions.

The search in the space of possible behaviors (i.e., see above the effortful search of the correct

action) is equivalent to the formation of the desired action attractor. We can compare this

process, with the formation in the motor network of the directional response in the presence

of visual stimulation. The task in the case of neonatal imitation is more difficult, because it

does not appear to involve any learning of the visuomotor connection, but is actually learnt

on–line, resulting in the convergent correction of the movement. This is possible, we believe,

due to the combinatorial properties of the neurons, which allow proprioceptive, motor and

visual information to be matched.

In the latter case (i.e., after 3 month of postnatal life), imitation represents the result of a

self-organizing learning process. The beginning of true imitative behavior accompanies the

emergence of eye-hand coordination. This suggests that both processes require the develop-

ment of equivalent neurobiological mechanisms. Hand–eye coordination begins to develop

between 2-4 months, inaugurating a period of trial–and–error practice at sighting objects

and grabbing at them. When executing actions, infants perceive and learn contingencies

between the motor activity and the visual image of the movements. Our work focused

upon the modeling of this behavioral scenario in order to develop visuomotor coordination.

We believe that the operation of the developed computational mechanism can establish the

foundations for imitative behavior.
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