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The continuum percolation problem of permeable and isotropically oriented sticks (with the form
of capped cylinders) is reconsidered by Monte Carlo simulations in 3D. Errors in earlier studies are
revealed and new results in agreement with the excluded volume rule are presented. Finite-size
effects are discussed.
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The three-dimensional (3D) continuum percolation
problem of hard-core or soft-core (permeable) geomet-
rical objects was an area of active research in the 80’s
[1]. Among the considered geometrical objects a very
important category is the case of permeable sticks with
the form of capped cylinders (cylinders of length L and
radius R capped with hemispheres of radius R) [2]. It
was conjectured [3] that the percolation threshold, qp,
is proportional to the inverse of the expected excluded
volume, Vex:

qp =
Nc

V
∝ 1

Vex
(1)

(We denoted by Nc the number of sticks at percolation
and by V the volume of the cube in which the percola-
tion problem is considered.) For sticks with the form of
capped cylinders the excluded volume is given by

Vex =
32π

3
R3 + 8πLR2 + 4L2R < sin(γ) >, (2)

where < sin(γ) > is the average value of sin(γ) for two
randomly positioned sticks, and γ is the angle between
them. For the isotropic orientation of rods (< sin(γ) >=
π/4) it was shown by a cluster expansion method [4]
that the proportionality in (1) becomes equality in the
R/L → 0 slender-rod limit. Monte Carlo (MC) stud-
ies for the problem were performed in [2] and analyti-
cal predictions were always discussed in comparison with
these data. It seems, however, that in the mentioned MC
study a classical mistake was made while generating the
isotropic distribution of rods, and the percolation thresh-
old was strongly affected. In the present paper we intend
to point out the mistake made in the earlier MC simula-
tions and give new corrected results in comparison with
the excluded volume theory.

In paper [2] the authors claim to obtain the isotropic
distribution of the rods orientations by generating their
θ and ϕ polar coordinates randomly with a uniform dis-
tribution on the [−π/2, π/2] and [0, 2π] intervals, respec-
tively. Following their two-dimensional study [5] they
define the measure of the macroscopic anisotropy of the
system as:

P‖/P⊥ =
N∑

i=1

| cos(θi) | /

N∑

i=1

[1 − cos2(θi)]1/2 (3)

However, proceeding in the way described above, the gen-
erated configurations will definitely not be the isotropic
ones, although their anisotropy constant will be (3). It is
easy to realize that the z axes will be a privileged one, and
percolation in this direction reached easier than in the y
or x direction. In order to get the right isotropic distribu-
tion for the rods orientation, their endpoints must span
uniformly the surface of a sphere. This can be achieved
only by choosing the θ angle randomly with a weighted
distribution and not a uniform one. From the surface
element on the unit-sphere (dσ = sin(θ) dθ dϕ) it is im-
mediate to realize that the weight-factor is governed by
the sin(θ) term.

The mistake made by the authors does not effect the
L << R limit, considered to get confidence in their sim-
ulation data. However, when calculating the ρc critical
density at percolation and the Vex excluded volume of
the sticks, they calculate the average of sin(γ) for the
right isotropic case, getting < sin(γ) >= π/4. Calculat-
ing < sin(γ) > for their ”isotropic” configurations the
result would be < sin(γ) >= 2/π.

We see thus that in the limit R/L → 0, where the
third term in (2) is the most important, the results are
strongly affected. The letter discussing on the validity of
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the excluded volume rule [4] observes the systematic de-
viation (Fig.2 in Ref. [4]) but fails in explaining its origin.
In [4] the authors argue that the systematic deviation is
due to the fact that much smaller aspect ratios are re-
quired to approach the right result in the R/L → 0 limit.
The origin of the difference is obvious, the generated con-
figurations were simply not isotropic! We also mention
here that the error in generating the right isotropic dis-
tribution is repeated in a rapid publication [6], where
the authors study by Monte Carlo methods the cluster
structure and conductivity of three-dimensional contin-
uum systems. The MC data for the isotropic system from
[2] is used in a series of other papers [7], where some ta-
bles and comparison with analytical results should be
reconsidered. It is important thus to reconsider the MC
simulations and to confirm properly the excluded volume
equality from [4].

We have studied the problem inside a cube with sizes
1. In order to preserve homogeneity near the cube’s
frontiers, the coordinates of the centers of the cylin-
ders were generated uniformly in the interval [−(L/2 +
R), 1 + (L/2 + R)]. The orientation of the cylinders were
isotropic, generating the θ angles with a weighted, and ϕ
with a uniform distribution. We tested the isotropy by
determining the percolation thresholds in different direc-
tions. The intersection of two capped cylinders was de-
termined by calculating the minimum distance between
points on the two axes of the corresponding cylinders and
checking if this distance is smaller than 2R. Each time a
new stick was generated, it was assigned to a cluster if it
intersected others, or a new cluster was created. We con-
sidered the percolation produced when the new cluster
spanned the cube from a face to the opposite face. We
calculated the critical concentration Nc as the number of
sticks inside the cube at percolation; if a capped cylin-
der was only partially inside the cube, it contributed to
Nc with a fractional value less than one, corresponding
to the fraction of its volume inside the cube to its total
volume. We produced 5000 percolations for each pair of
L and R studied, and the average Nc was calculated as
the one corresponding to the maximum of the Gaussian
distribution fitted on the distribution of the 5000 Nc’s
determined during simulations. This result was in good
agreement with simply the mean of the determined per-
colation thresholds, but it was much more precise.

The obtained results are summarized in Figs.1 and 2.
On Fig.1 we plot the quantity s = qpVex−1 as a function
of R/L for various fixed L values. In the limit R/L → 0
our simulations suggest the analytically predicted s = 0
relation [4]. The convergence for the applicability of this
equation is however rather slow. In the R/L → 0 limit
(R/L < 0.06) for L = 0.15 we found s scaling as a func-
tion of R/L with an exponent of 0.5764. From Fig.1 is
also clear that for smaller values of L and same R/L ra-
tios the value of s gets smaller. There are thus important
finite-size effects, which are less evident in the R/L → 0
limit. We checked that in the limit of L → 0 the s = 0
equality still does not hold. This is clear from our large-

scale simulation data for R/L = 0.5 and R/L = 0.25.
The data presented on Fig.2 suggest that in the limit
L → 0, s is linearly converging to 1.431 and 1.533 for
R/L = 0.25 and R/L = 0.5 respectively. Both from Fig.1
and Fig.2 one observes that the L dependence of the data
is much stronger for higher R/L values and in the limit
R/L → 0 we predict no finite-size effects. Approach-
ing better the R/L → 0 or L → 0 limits are technically
difficult due to the large number of sticks necessary for
percolation.

In conclusion, we corrected the earlier erroneous sim-
ulation results for the isotropic case and confirmed the
validity of the excluded volume rule. Important finite
size effects were found in the limit of large R/L aspect
ratios.
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FIG. 1. s = qpVex − 1 as a function of the R/L aspect ratios of the sticks. Data for three different stick lengths, L, are
presented. The magnified region shows the s = (R/L)0.5764 power-law fit (dashed line) for the R/L < 0.06 region.
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FIG. 2. Finite size effects: s = f(L) (s = qpVex − 1) for two different aspect ratios of the sticks. Continuous lines are the
best linear fits. In the L → 0 limit we got s = 1.431 and s = 1.534 for R/L = 0.25 and R/L = 0.5 respectively.
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